論文の概要: Classification of fetal compromise during labour: signal processing and
feature engineering of the cardiotocograph
- arxiv url: http://arxiv.org/abs/2111.00517v1
- Date: Sun, 31 Oct 2021 15:02:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-03 07:43:34.893596
- Title: Classification of fetal compromise during labour: signal processing and
feature engineering of the cardiotocograph
- Title(参考訳): 労働中の胎児の妥協の分類--信号処理と心電図の特徴工学
- Authors: M. O'Sullivan, T. Gabruseva, G. Boylan, M. O'Riordan, G. Lightbody, W.
Marnane
- Abstract要約: 本研究は,臨床専門知識とシステム制御理論に基づく新しいCTG機能を開発する。
特徴は、胎児の妥協を識別する上での有効性を評価するために、機械学習モデルで評価される。
ARMAは胎児の妥協を検知する主要な特徴にランク付けされている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cardiotocography (CTG) is the main tool used for fetal monitoring during
labour. Interpretation of CTG requires dynamic pattern recognition in real
time. It is recognised as a difficult task with high inter- and intra-observer
disagreement. Machine learning has provided a viable path towards objective and
reliable CTG assessment. In this study, novel CTG features are developed based
on clinical expertise and system control theory using an autoregressive
moving-average (ARMA) model to characterise the response of the fetal heart
rate to contractions. The features are evaluated in a machine learning model to
assess their efficacy in identifying fetal compromise. ARMA features ranked
amongst the top features for detecting fetal compromise. Additionally,
including clinical factors in the machine learning model and pruning data based
on a signal quality measure improved the performance of the classifier.
- Abstract(参考訳): 心電図(ctg)は、労働中の胎児のモニタリングに用いられる主要なツールである。
CTGの解釈には動的パターン認識がリアルタイムに必要である。
サーバ間およびサーバ内不一致の高いタスクとして認識されている。
機械学習は、客観的かつ信頼性の高いCTGアセスメントへの実行可能なパスを提供する。
本研究では, 自己回帰移動平均モデル(arma)を用いた臨床専門知識とシステム制御理論に基づいて新しいctg特徴を開発し, 胎児心拍数の収縮に対する応答を特徴付ける。
これらの特徴を機械学習モデルで評価し、胎児の妥協の同定における有効性を評価する。
ARMAは胎児の妥協を検知する主要な特徴にランク付けされている。
さらに、機械学習モデルにおける臨床的要因や信号品質測定に基づくプルーニングデータを含むことにより、分類器の性能が向上した。
関連論文リスト
- Efficient Feature Extraction Using Light-Weight CNN Attention-Based Deep Learning Architectures for Ultrasound Fetal Plane Classification [3.998431476275487]
本稿では,最大のベンチマークデータセットを分類するために,軽量な人工知能アーキテクチャを提案する。
アプローチは、ImageNet1kで事前トレーニングされた軽量のEfficientNet機能抽出バックボーンから微調整される。
本手法は,特徴を洗練するためのアテンション機構と3層パーセプトロンを組み込んだもので,トップ1の96.25%,トップ2の99.80%,F1スコアの0.9576で優れた性能を実現している。
論文 参考訳(メタデータ) (2024-10-22T20:02:38Z) - SQUWA: Signal Quality Aware DNN Architecture for Enhanced Accuracy in Atrial Fibrillation Detection from Noisy PPG Signals [37.788535094404644]
心房細動(AF)は脳卒中、心臓病、死亡のリスクを著しく増大させる。
光胸腺造影(PPG)信号は、運動人工物や、しばしば起立条件で遭遇する他の要因による腐敗に影響を受けやすい。
本研究では,一部劣化したPSGから正確な予測の維持方法を学習するための新しい深層学習モデルを提案する。
論文 参考訳(メタデータ) (2024-04-15T01:07:08Z) - D-STGCNT: A Dense Spatio-Temporal Graph Conv-GRU Network based on
transformer for assessment of patient physical rehabilitation [0.3626013617212666]
本稿では,リハビリテーション演習を評価するための新しいグラフベースモデルを提案する。
デンス接続とGRU機構は、大きな3Dスケルトン入力を迅速に処理するために使用される。
KIMOREおよびUI-PRMDデータセットに対する提案手法の評価は,その可能性を強調した。
論文 参考訳(メタデータ) (2023-12-21T00:38:31Z) - The Challenge of Fetal Cardiac MRI Reconstruction Using Deep Learning [11.809564612082935]
ディープラーニング手法は、kt-SENSE取得戦略の最適化と、非ゲートkt-SENSE再構築品質の向上に役立つ。
そこで本研究では,kt-SENSEスタイルの取得したデータをインビボの広範囲なデータセットを用いて再構成するための教師付きディープラーニングネットワークについて検討する。
本研究は,母体解剖の詳細な描写を大規模に再現するが,胎児心臓の動的特性は低発現であることを示す。
論文 参考訳(メタデータ) (2023-08-15T17:22:42Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Evaluation of self-supervised pre-training for automatic infant movement
classification using wearable movement sensors [2.995873287514728]
乳幼児ウェアラブルMAIJUは、乳幼児の運動性能を病院外環境で自動的に評価する手段を提供する。
そこで本研究では,MAIJU録音の分析に用いる分類器の性能向上について検討した。
論文 参考訳(メタデータ) (2023-05-16T11:46:16Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
本研究では,非構造的トピック関連超音波レポート生成のための新しい因子的注意・埋め込みモデル(FAE-Gen)を提案する。
提案したFAE-Genは主に2つのモジュール、すなわちビュー誘導因子の注意とトピック指向因子の埋め込みから構成されており、異なるビューで均質および不均一な形態的特徴を捉えている。
論文 参考訳(メタデータ) (2022-03-12T15:24:03Z) - Machine Learning-based Efficient Ventricular Tachycardia Detection Model
of ECG Signal [0.0]
心不全の一次診断と解析において、心電図信号は重要な役割を果たす。
本稿では,ノイズフィルタを用いた心室頻拍不整脈の予測モデル,心電図の特徴セット,機械学習に基づく分類モデルを提案する。
論文 参考訳(メタデータ) (2021-12-24T05:56:09Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Motion Pyramid Networks for Accurate and Efficient Cardiac Motion
Estimation [51.72616167073565]
本研究では,心臓の運動推定を高精度かつ効率的に行うための,ディープラーニングに基づく新しいアプローチであるMotion Pyramid Networksを提案する。
我々は、複数の特徴表現から運動場のピラミッドを予測し、融合し、より洗練された運動場を生成する。
そこで我々は,新しい循環型教員教育戦略を用いて,推論をエンドツーエンドにし,トラッキング性能をさらに向上させる。
論文 参考訳(メタデータ) (2020-06-28T21:03:19Z) - Heart Sound Segmentation using Bidirectional LSTMs with Attention [37.62160903348547]
心電図(PCG)信号を心臓状態に分割するための新しい枠組みを提案する。
我々は近年の注目に基づく学習の進歩を利用してPCG信号のセグメンテーションを行う。
提案手法は,ヒトと動物の両方の心臓記録を含む複数のベンチマークにおいて,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-04-02T02:09:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。