論文の概要: Efficient Feature Extraction Using Light-Weight CNN Attention-Based Deep Learning Architectures for Ultrasound Fetal Plane Classification
- arxiv url: http://arxiv.org/abs/2410.17396v1
- Date: Tue, 22 Oct 2024 20:02:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:55:06.900820
- Title: Efficient Feature Extraction Using Light-Weight CNN Attention-Based Deep Learning Architectures for Ultrasound Fetal Plane Classification
- Title(参考訳): 超音波胎児平面分類のための軽量CNN注意に基づくディープラーニングアーキテクチャを用いた効率的な特徴抽出
- Authors: Arrun Sivasubramanian, Divya Sasidharan, Sowmya V, Vinayakumar Ravi,
- Abstract要約: 本稿では,最大のベンチマークデータセットを分類するために,軽量な人工知能アーキテクチャを提案する。
アプローチは、ImageNet1kで事前トレーニングされた軽量のEfficientNet機能抽出バックボーンから微調整される。
本手法は,特徴を洗練するためのアテンション機構と3層パーセプトロンを組み込んだもので,トップ1の96.25%,トップ2の99.80%,F1スコアの0.9576で優れた性能を実現している。
- 参考スコア(独自算出の注目度): 3.998431476275487
- License:
- Abstract: Ultrasound fetal imaging is beneficial to support prenatal development because it is affordable and non-intrusive. Nevertheless, fetal plane classification (FPC) remains challenging and time-consuming for obstetricians since it depends on nuanced clinical aspects, which increases the difficulty in identifying relevant features of the fetal anatomy. Thus, to assist with its accurate feature extraction, a lightweight artificial intelligence architecture leveraging convolutional neural networks and attention mechanisms is proposed to classify the largest benchmark ultrasound dataset. The approach fine-tunes from lightweight EfficientNet feature extraction backbones pre-trained on the ImageNet1k. to classify key fetal planes such as the brain, femur, thorax, cervix, and abdomen. Our methodology incorporates the attention mechanism to refine features and 3-layer perceptrons for classification, achieving superior performance with the highest Top-1 accuracy of 96.25%, Top-2 accuracy of 99.80% and F1-Score of 0.9576. Importantly, the model has 40x fewer trainable parameters than existing benchmark ensemble or transformer pipelines, facilitating easy deployment on edge devices to help clinical practitioners with real-time FPC. The findings are also interpreted using GradCAM to carry out clinical correlation to aid doctors with diagnostics and improve treatment plans for expectant mothers.
- Abstract(参考訳): 超音波胎児イメージングは、安価で非侵襲的であるため、出生前発達を支援するのに有用である。
それにもかかわらず、胎児面分類(Fetal plane classification, FPC)は、胎児解剖学的特徴の同定の困難さを増す、ニュアンスな臨床側面に依存するため、産科医にとって困難かつ時間を要する。
したがって、その正確な特徴抽出を支援するために、畳み込みニューラルネットワークとアテンションメカニズムを活用した軽量人工知能アーキテクチャを提案し、最大のベンチマークベンチマークデータセットを分類する。
アプローチは、ImageNet1kで事前トレーニングされた軽量のEfficientNet機能抽出バックボーンから微調整される。
脳、大腿骨、胸郭、頸部、腹部などの胎児の重要な面を分類する。
本手法は,特徴を洗練するためのアテンション機構と3層パーセプトロンを組み込んだもので,トップ1の96.25%,トップ2の99.80%,F1スコアの0.9576で優れた性能を実現している。
重要なのは、このモデルは既存のベンチマークアンサンブルやトランスフォーマーパイプラインよりもトレーニング可能なパラメータが40倍少なく、エッジデバイスへのデプロイが容易で、リアルタイムFPCの実践者に役立つことだ。
また,GradCAMを用いて臨床相関を行ない,診断と治療計画の改善を図る。
関連論文リスト
- Measuring proximity to standard planes during fetal brain ultrasound scanning [8.328549443700858]
本稿では,超音波(US)平面を臨床利用に近づけるための新しいパイプラインを提案する。
ラベル付きSPとラベルなしUSボリュームスライスの両方を利用した半教師付きセグメンテーションモデルを提案する。
本モデルでは, 胎児の脳画像に対して, 信頼性の高いセグメンテーションを可能にする。
論文 参考訳(メタデータ) (2024-04-10T16:04:21Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - An Improved Model Ensembled of Different Hyper-parameter Tuned Machine
Learning Algorithms for Fetal Health Prediction [1.332560004325655]
本研究では,胎児の健康状態を予測するために,Support Vector MachineとExtraTreesのアンサンブルと呼ばれる頑健なアンサンブルモデルを提案する。
提案したETSEモデルは、100%精度、100%リコール、100%F1スコア、99.66%精度で他のモデルより優れていた。
論文 参考訳(メタデータ) (2023-05-26T16:40:44Z) - Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography [53.38589633687604]
針先端で取得した複雑なCT信号の位相および強度データから組織を分類するディープニューラルネットワークを提案する。
トレーニングセットの10%で、提案した事前学習戦略により、モデルが0.84のF1スコアを達成するのに対して、モデルが0.60のF1スコアを得るのに対して、モデルが0.84のF1スコアを得るのに役立ちます。
論文 参考訳(メタデータ) (2023-04-26T14:11:04Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Leveraging Clinically Relevant Biometric Constraints To Supervise A Deep
Learning Model For The Accurate Caliper Placement To Obtain Sonographic
Measurements Of The Fetal Brain [0.0]
経小脳平面(TC)の2次元USG画像から3つの重要な胎児脳バイオメトリーを計算するための深層学習(DL)手法を提案する。
U-Net DLモデルの精度を向上させるために,臨床的に関連するバイオメトリック制約(校正点間の関連性)とドメイン関連データ拡張を利用した。
いずれの場合も、個々のカリパーポイントの配置における平均誤差と計算されたバイオメトリーは、臨床医の誤差率に匹敵するものであった。
論文 参考訳(メタデータ) (2022-03-28T04:00:22Z) - Towards A Device-Independent Deep Learning Approach for the Automated
Segmentation of Sonographic Fetal Brain Structures: A Multi-Center and
Multi-Device Validation [0.0]
胎児脳USG画像(2D)から得られた2軸平面から10個の重要な胎児脳構造の自動分割のためのDLベースセグメンテーションフレームワークを提案する。
提案するDLシステムは,有望かつ汎用的な性能(マルチセンタ,マルチデバイス)を提供し,画像品質のデバイスによる変動を支持する証拠を提示する。
論文 参考訳(メタデータ) (2022-02-28T05:42:03Z) - Classification of fetal compromise during labour: signal processing and
feature engineering of the cardiotocograph [0.0]
本研究は,臨床専門知識とシステム制御理論に基づく新しいCTG機能を開発する。
特徴は、胎児の妥協を識別する上での有効性を評価するために、機械学習モデルで評価される。
ARMAは胎児の妥協を検知する主要な特徴にランク付けされている。
論文 参考訳(メタデータ) (2021-10-31T15:02:14Z) - Vision Transformers for femur fracture classification [59.99241204074268]
Vision Transformer (ViT) はテスト画像の83%を正確に予測することができた。
史上最大かつ最もリッチなデータセットを持つサブフラクチャーで良い結果が得られた。
論文 参考訳(メタデータ) (2021-08-07T10:12:42Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z) - Hybrid Attention for Automatic Segmentation of Whole Fetal Head in
Prenatal Ultrasound Volumes [52.53375964591765]
胎児の頭部全体を米国全巻に分割する,最初の完全自動化ソリューションを提案する。
セグメント化タスクは、まずエンコーダ-デコーダディープアーキテクチャの下で、エンドツーエンドのボリュームマッピングとして定式化される。
次に,セグメンタとハイブリットアテンションスキーム(HAS)を組み合わせることで,識別的特徴を選択し,非情報量的特徴を抑える。
論文 参考訳(メタデータ) (2020-04-28T14:43:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。