Fast Global Convergence of Policy Optimization for Constrained MDPs
- URL: http://arxiv.org/abs/2111.00552v1
- Date: Sun, 31 Oct 2021 17:46:26 GMT
- Title: Fast Global Convergence of Policy Optimization for Constrained MDPs
- Authors: Tao Liu, Ruida Zhou, Dileep Kalathil, P. R. Kumar, Chao Tian
- Abstract summary: We show that gradient-based methods can achieve an $mathcalO(log(T)/T)$ global convergence rate both for the optimality gap and the constraint violation.
When Slater's condition is satisfied and known a priori, zero constraint violation can be further guaranteed for a sufficiently large $T$.
- Score: 17.825031573375725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the issue of safety in reinforcement learning. We pose the problem
in a discounted infinite-horizon constrained Markov decision process framework.
Existing results have shown that gradient-based methods are able to achieve an
$\mathcal{O}(1/\sqrt{T})$ global convergence rate both for the optimality gap
and the constraint violation. We exhibit a natural policy gradient-based
algorithm that has a faster convergence rate $\mathcal{O}(\log(T)/T)$ for both
the optimality gap and the constraint violation. When Slater's condition is
satisfied and known a priori, zero constraint violation can be further
guaranteed for a sufficiently large $T$ while maintaining the same convergence
rate.
Related papers
- Multi-Agent Bayesian Optimization with Coupled Black-Box and Affine
Constraints [21.38692458445459]
We study the problem of distributed multi-agent Bayesian optimization with both coupled black-box constraints and known affine constraints.
A primal-dual distributed algorithm is proposed that achieves similar regret/violation bounds as those in the single-agent case.
arXiv Detail & Related papers (2023-10-02T08:07:36Z) - Strictly Low Rank Constraint Optimization -- An Asymptotically
$\mathcal{O}(\frac{1}{t^2})$ Method [5.770309971945476]
We propose a class of non-text and non-smooth problems with textitrank regularization to promote sparsity in optimal solution.
We show that our algorithms are able to achieve a singular convergence of $Ofrac(t2)$, which is exactly same as Nesterov's optimal convergence for first-order methods on smooth convex problems.
arXiv Detail & Related papers (2023-07-04T16:55:41Z) - Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Conservative Natural Policy Gradient Primal-Dual Algorithm [42.83837408373223]
We consider the problem of constrained Markov decision process (CMDP) in continuous state-actions spaces.
We propose a novel Conservative Natural Policy Gradient Primal-Dual Algorithm (C-NPG-PD) to achieve zero constraint violation.
arXiv Detail & Related papers (2022-06-12T22:31:43Z) - Algorithm for Constrained Markov Decision Process with Linear
Convergence [55.41644538483948]
An agent aims to maximize the expected accumulated discounted reward subject to multiple constraints on its costs.
A new dual approach is proposed with the integration of two ingredients: entropy regularized policy and Vaidya's dual.
The proposed approach is shown to converge (with linear rate) to the global optimum.
arXiv Detail & Related papers (2022-06-03T16:26:38Z) - Safe Online Bid Optimization with Return-On-Investment and Budget
Constraints subject to Uncertainty [87.81197574939355]
We study the nature of both the optimization and learning problems.
We provide an algorithm, namely GCB, guaranteeing sublinear regret at the cost of a potentially linear number of constraints violations.
More interestingly, we provide an algorithm, namely GCB_safe(psi,phi), guaranteeing both sublinear pseudo-regret and safety w.h.p. at the cost of accepting tolerances psi and phi.
arXiv Detail & Related papers (2022-01-18T17:24:20Z) - Understanding the Effect of Stochasticity in Policy Optimization [86.7574122154668]
We show that the preferability of optimization methods depends critically on whether exact gradients are used.
Second, to explain these findings we introduce the concept of committal rate for policy optimization.
Third, we show that in the absence of external oracle information, there is an inherent trade-off between exploiting geometry to accelerate convergence versus achieving optimality almost surely.
arXiv Detail & Related papers (2021-10-29T06:35:44Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Concave Utility Reinforcement Learning with Zero-Constraint Violations [43.29210413964558]
We consider the problem of concave utility reinforcement learning (CURL) with convex constraints.
We propose a model-based learning algorithm that also achieves zero constraint violations.
arXiv Detail & Related papers (2021-09-12T06:13:33Z) - Softmax Policy Gradient Methods Can Take Exponential Time to Converge [60.98700344526674]
The softmax policy gradient (PG) method is arguably one of the de facto implementations of policy optimization in modern reinforcement learning.
We demonstrate that softmax PG methods can take exponential time -- in terms of $mathcalS|$ and $frac11-gamma$ -- to converge.
arXiv Detail & Related papers (2021-02-22T18:56:26Z) - On the Almost Sure Convergence of Stochastic Gradient Descent in
Non-Convex Problems [75.58134963501094]
This paper analyzes the trajectories of gradient descent (SGD)
We show that SGD avoids saddle points/manifolds with $1$ for strict step-size policies.
arXiv Detail & Related papers (2020-06-19T14:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.