Nearly Optimal Sample Complexity of Offline KL-Regularized Contextual Bandits under Single-Policy Concentrability
- URL: http://arxiv.org/abs/2502.06051v1
- Date: Sun, 09 Feb 2025 22:14:45 GMT
- Title: Nearly Optimal Sample Complexity of Offline KL-Regularized Contextual Bandits under Single-Policy Concentrability
- Authors: Qingyue Zhao, Kaixuan Ji, Heyang Zhao, Tong Zhang, Quanquan Gu,
- Abstract summary: We propose the emphfirst algorithm with $tildeO(epsilon-1)$ sample complexity under single-policy concentrability for offline contextual bandits.
Our proof leverages the strong convexity of the KL regularization, and the conditional non-negativity of the gap between the true reward and its pessimistic estimator.
We extend our algorithm to contextual dueling bandits and achieve a similar nearly optimal sample complexity.
- Score: 49.96531901205305
- License:
- Abstract: KL-regularized policy optimization has become a workhorse in learning-based decision making, while its theoretical understanding is still very limited. Although recent progress has been made towards settling the sample complexity of KL-regularized contextual bandits, existing sample complexity bounds are either $\tilde{O}(\epsilon^{-2})$ under single-policy concentrability or $\tilde{O}(\epsilon^{-1})$ under all-policy concentrability. In this paper, we propose the \emph{first} algorithm with $\tilde{O}(\epsilon^{-1})$ sample complexity under single-policy concentrability for offline contextual bandits. Our algorithm is designed for general function approximation and based on the principle of \emph{pessimism in the face of uncertainty}. The core of our proof leverages the strong convexity of the KL regularization, and the conditional non-negativity of the gap between the true reward and its pessimistic estimator to refine a mean-value-type risk upper bound to its extreme. This in turn leads to a novel covariance-based analysis, effectively bypassing the need for uniform control over the discrepancy between any two functions in the function class. The near-optimality of our algorithm is demonstrated by an $\tilde{\Omega}(\epsilon^{-1})$ lower bound. Furthermore, we extend our algorithm to contextual dueling bandits and achieve a similar nearly optimal sample complexity.
Related papers
- Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - Achieving the Asymptotically Optimal Sample Complexity of Offline Reinforcement Learning: A DRO-Based Approach [36.88301225561535]
offline reinforcement learning aims to learn from pre-collected datasets without active exploration.
Existing approaches adopt a pessimistic stance towards uncertainty by penalizing rewards of under-explored state-action pairs to estimate value functions conservatively.
We show that the distributionally robust optimization (DRO) based approach can also address these challenges and is asymptotically minimax optimal
arXiv Detail & Related papers (2023-05-22T17:50:18Z) - A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization [53.044526424637866]
In this paper we consider finding an approximate second-order stationary point (SOSP) that minimizes a twice different subject general non conic optimization.
In particular, we propose a Newton-CG based-augmentedconjugate method for finding an approximate SOSP.
arXiv Detail & Related papers (2023-01-10T20:43:29Z) - Optimal Algorithms for Stochastic Complementary Composite Minimization [55.26935605535377]
Inspired by regularization techniques in statistics and machine learning, we study complementary composite minimization.
We provide novel excess risk bounds, both in expectation and with high probability.
Our algorithms are nearly optimal, which we prove via novel lower complexity bounds for this class of problems.
arXiv Detail & Related papers (2022-11-03T12:40:24Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - A Stochastic Proximal Method for Nonsmooth Regularized Finite Sum
Optimization [7.014966911550542]
We consider the problem of training a deep neural network with nonsmooth regularization to retrieve a sparse sub-structure.
We derive a new solver, called SR2, whose convergence and worst-case complexity are established without knowledge or approximation of the gradient's Lipschitz constant.
Experiments on network instances trained on CIFAR-10 and CIFAR-100 show that SR2 consistently achieves higher sparsity and accuracy than related methods such as ProxGEN and ProxSGD.
arXiv Detail & Related papers (2022-06-14T00:28:44Z) - Finite-Sample Analysis of Off-Policy Natural Actor-Critic with Linear
Function Approximation [5.543220407902113]
We develop a novel variant of off-policy natural actor-critic algorithm with linear function approximation.
We establish a sample complexity of $mathcalO(epsilon-3)$, outperforming all the previously known convergence bounds of such algorithms.
arXiv Detail & Related papers (2021-05-26T13:35:42Z) - The Complexity of Nonconvex-Strongly-Concave Minimax Optimization [43.07732143522183]
This paper establishes the complexity for finding approximate stationary points of non-strongly-concave (NC-SC) smooth minimax problems.
We deploy a proposed sequence of $Omega-strong$lyconcave sub-2 problems in both general complexity and averaged complexity.
In our proposed finite-sum setting, our proposed algorithm provides a nearly-tight dependence on the condition number.
arXiv Detail & Related papers (2021-03-29T18:53:57Z) - Escaping Saddle-Points Faster under Interpolation-like Conditions [19.9471360853892]
We show that under over-parametrization several standard optimization algorithms escape saddle-points and converge to local-minimizers much faster.
We discuss the first-order oracle complexity of Perturbed Gradient Descent (PSGD) algorithm to reach an $epsilon$ localminimizer.
We next analyze Cubic-Regularized Newton (SCRN) algorithm under-like conditions, and show that the oracle complexity to reach an $epsilon$ local-minimizer under-like conditions, is $tildemathcalO (1/epsilon2.5
arXiv Detail & Related papers (2020-09-28T02:15:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.