URIR: Recommendation algorithm of user RNN encoder and item encoder
based on knowledge graph
- URL: http://arxiv.org/abs/2111.00739v1
- Date: Mon, 1 Nov 2021 07:28:11 GMT
- Title: URIR: Recommendation algorithm of user RNN encoder and item encoder
based on knowledge graph
- Authors: Na zhao, Zhen Long, Zhi-Dan Zhao, Jian Wang
- Abstract summary: This research proposes a user Recurrent Neural Network (RNN) encoder and item encoder recommendation algorithm based on Knowledge Graph (URIR)
Numerical experiments on three real-world datasets demonstrate that datasetsR is superior performance to state-of-the-art algorithms in indicators such as AUC, Precision, Recall, and MRR.
- Score: 11.453995744951497
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to a large amount of information, it is difficult for users to find what
they are interested in among the many choices. In order to improve users'
experience, recommendation systems have been widely used in music
recommendations, movie recommendations, online shopping, and other scenarios.
Recently, Knowledge Graph (KG) has been proven to be an effective tool to
improve the performance of recommendation systems. However, a huge challenge in
applying knowledge graphs for recommendation is how to use knowledge graphs to
obtain better user codes and item codes. In response to this problem, this
research proposes a user Recurrent Neural Network (RNN) encoder and item
encoder recommendation algorithm based on Knowledge Graph (URIR). This study
encodes items by capturing high-level neighbor information to generate items'
representation vectors and applies an RNN and items' representation vectors to
encode users to generate users' representation vectors, and then perform inner
product operation on users' representation vectors and items' representation
vectors to get probabilities of users interaction with items. Numerical
experiments on three real-world datasets demonstrate that URIR is superior
performance to state-of-the-art algorithms in indicators such as AUC,
Precision, Recall, and MRR. This implies that URIR can effectively use
knowledge graph to obtain better user codes and item codes, thereby obtaining
better recommendation results.
Related papers
- Enhancing Graph Contrastive Learning with Reliable and Informative Augmentation for Recommendation [84.45144851024257]
CoGCL aims to enhance graph contrastive learning by constructing contrastive views with stronger collaborative information via discrete codes.
We introduce a multi-level vector quantizer in an end-to-end manner to quantize user and item representations into discrete codes.
For neighborhood structure, we propose virtual neighbor augmentation by treating discrete codes as virtual neighbors.
Regarding semantic relevance, we identify similar users/items based on shared discrete codes and interaction targets to generate the semantically relevant view.
arXiv Detail & Related papers (2024-09-09T14:04:17Z) - Knowledge-Enhanced Recommendation with User-Centric Subgraph Network [38.814514460928386]
We propose Knowledge-enhanced User-Centric subgraph Network (KUCNet) for effective recommendation.
KUCNet is a subgraph learning approach with graph neural network (GNN) for effective recommendation.
Our proposed method achieves accurate, efficient, and interpretable recommendations especially for new items.
arXiv Detail & Related papers (2024-03-21T13:09:23Z) - DEKGCI: A double-sided recommendation model for integrating knowledge
graph and user-item interaction graph [0.0]
We propose DEKGCI, a novel double-sided recommendation model.
We use the high-order collaborative signals from the user-item interaction graph to enrich the user representations on the user side.
arXiv Detail & Related papers (2023-06-24T01:54:49Z) - Knowledge Graph Contrastive Learning for Recommendation [32.918864602360884]
We design a general Knowledge Graph Contrastive Learning framework to alleviate the information noise for knowledge graph-enhanced recommender systems.
Specifically, we propose a knowledge graph augmentation schema to suppress KG noise in information aggregation.
We exploit additional supervision signals from the KG augmentation process to guide a cross-view contrastive learning paradigm.
arXiv Detail & Related papers (2022-05-02T15:24:53Z) - Conditional Attention Networks for Distilling Knowledge Graphs in
Recommendation [74.14009444678031]
We propose Knowledge-aware Conditional Attention Networks (KCAN) to incorporate knowledge graph into a recommender system.
We use a knowledge-aware attention propagation manner to obtain the node representation first, which captures the global semantic similarity on the user-item network and the knowledge graph.
Then, by applying a conditional attention aggregation on the subgraph, we refine the knowledge graph to obtain target-specific node representations.
arXiv Detail & Related papers (2021-11-03T09:40:43Z) - DSKReG: Differentiable Sampling on Knowledge Graph for Recommendation
with Relational GNN [59.160401038969795]
We propose differentiable sampling on Knowledge Graph for Recommendation with GNN (DSKReG)
We devise a differentiable sampling strategy, which enables the selection of relevant items to be jointly optimized with the model training procedure.
The experimental results demonstrate that our model outperforms state-of-the-art KG-based recommender systems.
arXiv Detail & Related papers (2021-08-26T16:19:59Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z) - Deep Learning on Knowledge Graph for Recommender System: A Survey [36.41255991011155]
A knowledge graph is capable of encoding high-order relations that connect two objects with one or multiple related attributes.
With the help of the emerging Graph Neural Networks (GNN), it is possible to extract both object characteristics and relations from KG.
arXiv Detail & Related papers (2020-03-25T22:53:14Z) - Graph Convolution Machine for Context-aware Recommender System [59.50474932860843]
We extend the advantages of graph convolutions to context-aware recommender system (CARS)
We propose textitGraph Convolution Machine (GCM), an end-to-end framework that consists of three components: an encoder, graph convolution layers, and a decoder.
We conduct experiments on three real-world datasets from Yelp and Amazon, validating the effectiveness of GCM and the benefits of performing graph convolutions for CARS.
arXiv Detail & Related papers (2020-01-30T15:32:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.