Knowledge-Enhanced Recommendation with User-Centric Subgraph Network
- URL: http://arxiv.org/abs/2403.14377v1
- Date: Thu, 21 Mar 2024 13:09:23 GMT
- Title: Knowledge-Enhanced Recommendation with User-Centric Subgraph Network
- Authors: Guangyi Liu, Quanming Yao, Yongqi Zhang, Lei Chen,
- Abstract summary: We propose Knowledge-enhanced User-Centric subgraph Network (KUCNet) for effective recommendation.
KUCNet is a subgraph learning approach with graph neural network (GNN) for effective recommendation.
Our proposed method achieves accurate, efficient, and interpretable recommendations especially for new items.
- Score: 38.814514460928386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recommendation systems, as widely implemented nowadays on various platforms, recommend relevant items to users based on their preferences. The classical methods which rely on user-item interaction matrices has limitations, especially in scenarios where there is a lack of interaction data for new items. Knowledge graph (KG)-based recommendation systems have emerged as a promising solution. However, most KG-based methods adopt node embeddings, which do not provide personalized recommendations for different users and cannot generalize well to the new items. To address these limitations, we propose Knowledge-enhanced User-Centric subgraph Network (KUCNet), a subgraph learning approach with graph neural network (GNN) for effective recommendation. KUCNet constructs a U-I subgraph for each user-item pair that captures both the historical information of user-item interactions and the side information provided in KG. An attention-based GNN is designed to encode the U-I subgraphs for recommendation. Considering efficiency, the pruned user-centric computation graph is further introduced such that multiple U-I subgraphs can be simultaneously computed and that the size can be pruned by Personalized PageRank. Our proposed method achieves accurate, efficient, and interpretable recommendations especially for new items. Experimental results demonstrate the superiority of KUCNet over state-of-the-art KG-based and collaborative filtering (CF)-based methods.
Related papers
- How to Surprisingly Consider Recommendations? A Knowledge-Graph-based Approach Relying on Complex Network Metrics [0.2537383030441368]
We propose a Knowledge Graph based recommender system by encoding user interactions on item catalogs.
Our study explores whether network-level metrics on KGs can influence the degree of surprise in recommendations.
We experimentally evaluate our approach on two datasets of LastFM listening histories and synthetic Netflix viewing profiles.
arXiv Detail & Related papers (2024-05-14T09:38:44Z) - Cluster-based Graph Collaborative Filtering [55.929052969825825]
Graph Convolution Networks (GCNs) have succeeded in learning user and item representations for recommendation systems.
Most existing GCN-based methods overlook the multiple interests of users while performing high-order graph convolution.
We propose a novel GCN-based recommendation model, termed Cluster-based Graph Collaborative Filtering (ClusterGCF)
arXiv Detail & Related papers (2024-04-16T07:05:16Z) - Linear-Time Graph Neural Networks for Scalable Recommendations [50.45612795600707]
The key of recommender systems is to forecast users' future behaviors based on previous user-item interactions.
Recent years have witnessed a rising interest in leveraging Graph Neural Networks (GNNs) to boost the prediction performance of recommender systems.
We propose a Linear-Time Graph Neural Network (LTGNN) to scale up GNN-based recommender systems to achieve comparable scalability as classic MF approaches.
arXiv Detail & Related papers (2024-02-21T17:58:10Z) - Neural Graph Collaborative Filtering Using Variational Inference [19.80976833118502]
We introduce variational embedding collaborative filtering (GVECF) as a novel framework to incorporate representations learned through a variational graph auto-encoder.
Our proposed method achieves up to 13.78% improvement in the recall over the test data.
arXiv Detail & Related papers (2023-11-20T15:01:33Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - IA-GCN: Interactive Graph Convolutional Network for Recommendation [13.207235494649343]
Graph Convolutional Network (GCN) has become a novel state-of-the-art for Collaborative Filtering (CF) based Recommender Systems (RS)
We build bilateral interactive guidance between each user-item pair and propose a new model named IA-GCN (short for InterActive GCN)
Our model is built on top of LightGCN, a state-of-the-art GCN model for CF, and can be combined with various GCN-based CF architectures in an end-to-end fashion.
arXiv Detail & Related papers (2022-04-08T03:38:09Z) - URIR: Recommendation algorithm of user RNN encoder and item encoder
based on knowledge graph [11.453995744951497]
This research proposes a user Recurrent Neural Network (RNN) encoder and item encoder recommendation algorithm based on Knowledge Graph (URIR)
Numerical experiments on three real-world datasets demonstrate that datasetsR is superior performance to state-of-the-art algorithms in indicators such as AUC, Precision, Recall, and MRR.
arXiv Detail & Related papers (2021-11-01T07:28:11Z) - DSKReG: Differentiable Sampling on Knowledge Graph for Recommendation
with Relational GNN [59.160401038969795]
We propose differentiable sampling on Knowledge Graph for Recommendation with GNN (DSKReG)
We devise a differentiable sampling strategy, which enables the selection of relevant items to be jointly optimized with the model training procedure.
The experimental results demonstrate that our model outperforms state-of-the-art KG-based recommender systems.
arXiv Detail & Related papers (2021-08-26T16:19:59Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - Rule-Guided Graph Neural Networks for Recommender Systems [15.973065623038424]
We propose RGRec, which combines rule learning and graph neural networks (GNNs) for recommendation.
We show the effectiveness of RGRec on three real-world datasets.
arXiv Detail & Related papers (2020-09-09T05:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.