論文の概要: Gomoku: analysis of the game and of the player Wine
- arxiv url: http://arxiv.org/abs/2111.01016v1
- Date: Mon, 1 Nov 2021 15:21:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-02 15:18:17.712828
- Title: Gomoku: analysis of the game and of the player Wine
- Title(参考訳): 五目(ごもく):ゲームとプレイヤーワインの分析
- Authors: Lorenzo Piazzo, Michele Scarpiniti and Enzo Baccarelli
- Abstract要約: 五目(ごもく)は、古典的なボードゲームで、新しい人工知能(AI)技術をテストするのに適している。
本稿では,既存のゲームよりも広く,より深いゲームコンセプトと戦略について分析する。
人工プレーヤーの汎用構造を議論した後、インターネット上で自由に利用できる強力な五目プレーヤーWineを提示し、分析する。
- 参考スコア(独自算出の注目度): 11.086440815804226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gomoku, also known as five in a row, is a classical board game, ideally
suited for quickly testing novel Artificial Intelligence (AI) techniques. With
the aim of facilitating a developer willing to write a new Gomoku player, in
this report we present an analysis of the main game concepts and strategies,
which is wider and deeper than existing ones. Moreover, after discussing the
general structure of an artificial player, we present and analyse a strong
Gomoku player, named Wine, the code of which is freely available on the
Internet and which is an excelent example of how a modern player is organised.
- Abstract(参考訳): 五目(ごもく)は、古典的なボードゲームで、新しい人工知能(AI)技術を試すのに理想的に適している。
本報告では,新たなゴモクプレイヤーの作成を希望する開発者を支援することを目的として,既存のゲームよりも広く,より深いゲームコンセプトと戦略の分析を行う。
また,人工的プレーヤの一般構造について論じた上で,インターネット上で自由に利用でき,現代的プレーヤの組織化方法の優れた例である,ワインという名の強い五目プレーヤを提示・分析した。
関連論文リスト
- Mastering the Game of Guandan with Deep Reinforcement Learning and
Behavior Regulating [16.718186690675164]
我々は,グアンダンのゲームをマスターするAIエージェントのためのフレームワークGuanZeroを提案する。
本論文の主な貢献は、注意深く設計されたニューラルネットワーク符号化方式によるエージェントの動作の制御である。
論文 参考訳(メタデータ) (2024-02-21T07:26:06Z) - DanZero+: Dominating the GuanDan Game through Reinforcement Learning [95.90682269990705]
我々は、GuanDanという、非常に複雑で人気のあるカードゲームのためのAIプログラムを開発した。
私たちはまず、DanZeroという名のAIプログラムをこのゲームのために提案しました。
AIの能力をさらに強化するために、政策に基づく強化学習アルゴリズムをGuanDanに適用する。
論文 参考訳(メタデータ) (2023-12-05T08:07:32Z) - AlphaZero Gomoku [9.434566356382529]
我々は、AlphaZeroを「Five in a Row」とも呼ばれる古くからのボードゲーム「Gomoku」に拡張する。
我々のテストは、Go以外のゲームに適応するAlphaZeroの汎用性を示している。
論文 参考訳(メタデータ) (2023-09-04T00:20:06Z) - Are AlphaZero-like Agents Robust to Adversarial Perturbations? [73.13944217915089]
AlphaZero(AZ)は、ニューラルネットワークベースのGo AIが人間のパフォーマンスを大きく上回ることを示した。
私たちは、Go AIが驚くほど間違った行動を起こさせる可能性のある、敵対的な状態が存在するかどうか尋ねる。
我々は、Go AIに対する最初の敵攻撃を開発し、探索空間を戦略的に減らし、効率よく敵の状態を探索する。
論文 参考訳(メタデータ) (2022-11-07T18:43:25Z) - DanZero: Mastering GuanDan Game with Reinforcement Learning [121.93690719186412]
カードゲームAIは、人工知能の研究において常にホットな話題となっている。
本稿では,より複雑なカードゲームであるGuanDanのためのAIプログラムの開発に専念する。
そこで我々は,強化学習技術を用いたGuanDanのためのAIプログラムDanZeroを提案する。
論文 参考訳(メタデータ) (2022-10-31T06:29:08Z) - WinoGAViL: Gamified Association Benchmark to Challenge
Vision-and-Language Models [91.92346150646007]
本研究では,視覚・言語関係を収集するオンラインゲームであるWinoGAViLを紹介する。
私たちはこのゲームを使って3.5Kのインスタンスを収集し、それらが人間には直感的だが最先端のAIモデルには挑戦的であることを発見した。
我々の分析とプレイヤーからのフィードバックは、収集された協会が多様な推論スキルを必要とすることを示している。
論文 参考訳(メタデータ) (2022-07-25T23:57:44Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - Mastering Terra Mystica: Applying Self-Play to Multi-agent Cooperative
Board Games [0.0]
本稿では,Terra Mysticaの複雑な戦略ゲームを解くための複数のアルゴリズムを探索し,比較する。
これらのブレークスルーをTMの新しい状態表現に適用し、人間のプレイヤーに匹敵するAIを作ることを目指しています。
最後に、複数のベースラインと典型的な人間のスコアを比較して、この手法の成功と欠点について議論する。
論文 参考訳(メタデータ) (2021-02-21T07:53:34Z) - ScrofaZero: Mastering Trick-taking Poker Game Gongzhu by Deep
Reinforcement Learning [2.7178968279054936]
gongzhuというトリックテイクゲームは、contract bridgeに似ているが、ややシンプルだ。
深層強化学習により,textittabula rasaから強いgongzhu ai scrofazeroを訓練する。
本稿では,階層化サンプリング,重み付け,等価クラスに対する積分,ベイズ推論などを含む不完全な情報ゲームのための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-15T12:01:44Z) - Suphx: Mastering Mahjong with Deep Reinforcement Learning [114.68233321904623]
我々は、新たに導入されたいくつかの技術を用いた深層強化学習に基づいて、Suphxという名のマフジョンのためのAIを設計する。
Suphxは、安定したランクの点で、ほとんどのトップの人間プレイヤーよりも強いパフォーマンスを示している。
コンピュータプログラムがマヒョンで最上位の人間プレイヤーを上回るのは、これが初めてである。
論文 参考訳(メタデータ) (2020-03-30T16:18:16Z) - From Chess and Atari to StarCraft and Beyond: How Game AI is Driving the
World of AI [10.80914659291096]
Game AIは、最も先進的なAIアルゴリズムを開発し、テストするための研究分野として、自らを確立した。
Game AIの進歩は、ロボティクスや化学物質の合成など、ゲーム以外の領域にも拡張され始めている。
論文 参考訳(メタデータ) (2020-02-24T18:28:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。