論文の概要: From Chess and Atari to StarCraft and Beyond: How Game AI is Driving the
World of AI
- arxiv url: http://arxiv.org/abs/2002.10433v1
- Date: Mon, 24 Feb 2020 18:28:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-29 02:53:06.344060
- Title: From Chess and Atari to StarCraft and Beyond: How Game AI is Driving the
World of AI
- Title(参考訳): チェスとアタリからStarCraftとBeyond:ゲームAIがAIの世界を駆り立てる方法
- Authors: Sebastian Risi and Mike Preuss
- Abstract要約: Game AIは、最も先進的なAIアルゴリズムを開発し、テストするための研究分野として、自らを確立した。
Game AIの進歩は、ロボティクスや化学物質の合成など、ゲーム以外の領域にも拡張され始めている。
- 参考スコア(独自算出の注目度): 10.80914659291096
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper reviews the field of Game AI, which not only deals with creating
agents that can play a certain game, but also with areas as diverse as creating
game content automatically, game analytics, or player modelling. While Game AI
was for a long time not very well recognized by the larger scientific
community, it has established itself as a research area for developing and
testing the most advanced forms of AI algorithms and articles covering advances
in mastering video games such as StarCraft 2 and Quake III appear in the most
prestigious journals. Because of the growth of the field, a single review
cannot cover it completely. Therefore, we put a focus on important recent
developments, including that advances in Game AI are starting to be extended to
areas outside of games, such as robotics or the synthesis of chemicals. In this
article, we review the algorithms and methods that have paved the way for these
breakthroughs, report on the other important areas of Game AI research, and
also point out exciting directions for the future of Game AI.
- Abstract(参考訳): 本稿では,ゲームAIの分野を概観する。ゲームAIは特定のゲームでプレイできるエージェントを作成するだけでなく,ゲームコンテンツの自動作成やゲーム分析,ゲームモデリングといった分野も扱う。
Game AIは長い間、大きな科学コミュニティからはあまり認知されていなかったが、最も高度なAIアルゴリズムとStarCraft 2やQuake IIIのようなビデオゲームの習得の進歩に関する記事の開発とテストのための研究分野としての地位を確立してきた。
この分野の成長のため、単一のレビューで完全にカバーすることはできない。
そこで我々は,ゲームAIの進歩が,ロボット工学や化学物質合成といったゲーム以外の領域にまで拡張され始めていることを含む,最近の重要な発展に焦点をあてた。
本稿では、これらのブレークスルーの道を開いたアルゴリズムと手法をレビューし、Game AI研究の他の重要な領域について報告するとともに、Game AIの将来に対するエキサイティングな方向性を指摘する。
関連論文リスト
- DanZero+: Dominating the GuanDan Game through Reinforcement Learning [95.90682269990705]
我々は、GuanDanという、非常に複雑で人気のあるカードゲームのためのAIプログラムを開発した。
私たちはまず、DanZeroという名のAIプログラムをこのゲームのために提案しました。
AIの能力をさらに強化するために、政策に基づく強化学習アルゴリズムをGuanDanに適用する。
論文 参考訳(メタデータ) (2023-12-05T08:07:32Z) - Artificial intelligence adoption in the physical sciences, natural
sciences, life sciences, social sciences and the arts and humanities: A
bibliometric analysis of research publications from 1960-2021 [73.06361680847708]
1960年には333の研究分野の14%がAIに関連していたが、1972年には全研究分野の半分以上、1986年には80%以上、現在では98%以上まで増加した。
1960年には、333の研究分野の14%がAI(コンピュータ科学の多くの分野)に関連していたが、1972年までに全研究分野の半分以上、1986年には80%以上、現在では98%以上まで増加した。
我々は、現在の急上昇の状況が異なっており、学際的AI応用が持続する可能性が高いと結論付けている。
論文 参考訳(メタデータ) (2023-06-15T14:08:07Z) - Teamwork under extreme uncertainty: AI for Pokemon ranks 33rd in the
world [0.0]
本稿では,ゲームのメカニズムを解説し,ゲーム解析を行う。
ゲームにおける2つの最大の課題は、バランスのとれたチームを維持し、不確実性の3つの源に対処することだ、という認識に基づいて、ユニークなAIアルゴリズムを提案する。
我々のAIエージェントは、これまでのすべての試みよりも大幅に向上し、世界で最も人気のある戦闘フォーマットの1つで、世界で33位まで上昇しました。
論文 参考訳(メタデータ) (2022-12-27T01:52:52Z) - DanZero: Mastering GuanDan Game with Reinforcement Learning [121.93690719186412]
カードゲームAIは、人工知能の研究において常にホットな話題となっている。
本稿では,より複雑なカードゲームであるGuanDanのためのAIプログラムの開発に専念する。
そこで我々は,強化学習技術を用いたGuanDanのためのAIプログラムDanZeroを提案する。
論文 参考訳(メタデータ) (2022-10-31T06:29:08Z) - AI in Games: Techniques, Challenges and Opportunities [40.86375378643978]
Libratus、OpenAI Five、AlphaStarといった様々なゲームAIシステムが開発され、プロの人間プレイヤーに勝っている。
本稿では,最近成功したゲームAI,ボードゲームAI,カードゲームAI,ファーストパーソンシューティングゲームAI,リアルタイム戦略ゲームAIについて調査する。
論文 参考訳(メタデータ) (2021-11-15T09:35:53Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - "Weak AI" is Likely to Never Become "Strong AI", So What is its Greatest
Value for us? [4.497097230665825]
多くの研究者は、ここ数十年でAIがほとんど進歩していないと主張している。
著者は、AIに関する議論が存在する理由を説明します。(2)「弱いAI」と「強いAI」と呼ばれる2つのAI研究パラダイムを区別します。
論文 参考訳(メタデータ) (2021-03-29T02:57:48Z) - AI and Wargaming [7.946510318969309]
我々は、ウォーガーミングのレンズを通して、現在の最先端技術についてレビューする。
第一に、ウォーゲームと通常のAIテストベッドを区別する機能は何か、そして第二に、最近のAIの進歩が、これらのウォーゲーム固有の機能に最も適しているのかを問う。
論文 参考訳(メタデータ) (2020-09-18T16:39:54Z) - Suphx: Mastering Mahjong with Deep Reinforcement Learning [114.68233321904623]
我々は、新たに導入されたいくつかの技術を用いた深層強化学習に基づいて、Suphxという名のマフジョンのためのAIを設計する。
Suphxは、安定したランクの点で、ほとんどのトップの人間プレイヤーよりも強いパフォーマンスを示している。
コンピュータプログラムがマヒョンで最上位の人間プレイヤーを上回るのは、これが初めてである。
論文 参考訳(メタデータ) (2020-03-30T16:18:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。