論文の概要: Correlation between image quality metrics of magnetic resonance images
and the neural network segmentation accuracy
- arxiv url: http://arxiv.org/abs/2111.01093v1
- Date: Mon, 1 Nov 2021 17:02:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-02 17:24:17.491926
- Title: Correlation between image quality metrics of magnetic resonance images
and the neural network segmentation accuracy
- Title(参考訳): 磁気共鳴画像の画質指標とニューラルネットワークのセグメンテーション精度の相関
- Authors: Rajarajeswari Muthusivarajan, Adrian Celaya, Joshua P. Yung, Satish
Viswanath, Daniel S. Marcus, Caroline Chung, David Fuentes
- Abstract要約: 本研究では,MR画像の画質指標とニューラルネットワークのセグメンテーション精度の相関について検討した。
IQMに基づくトレーニング入力を用いたランダムなトレーニング入力に基づくモデル間のセグメンテーション精度の違いは、セグメンテーション精度における画像品質指標の役割に光を当てた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks with multilevel connections process input data in
complex ways to learn the information.A networks learning efficiency depends
not only on the complex neural network architecture but also on the input
training images.Medical image segmentation with deep neural networks for skull
stripping or tumor segmentation from magnetic resonance images enables learning
both global and local features of the images.Though medical images are
collected in a controlled environment,there may be artifacts or equipment based
variance that cause inherent bias in the input set.In this study, we
investigated the correlation between the image quality metrics of MR images
with the neural network segmentation accuracy.For that we have used the 3D
DenseNet architecture and let the network trained on the same input but
applying different methodologies to select the training data set based on the
IQM values.The difference in the segmentation accuracy between models based on
the random training inputs with IQM based training inputs shed light on the
role of image quality metrics on segmentation accuracy.By running the image
quality metrics to choose the training inputs,further we may tune the learning
efficiency of the network and the segmentation accuracy.
- Abstract(参考訳): Deep neural networks with multilevel connections process input data in complex ways to learn the information.A networks learning efficiency depends not only on the complex neural network architecture but also on the input training images.Medical image segmentation with deep neural networks for skull stripping or tumor segmentation from magnetic resonance images enables learning both global and local features of the images.Though medical images are collected in a controlled environment,there may be artifacts or equipment based variance that cause inherent bias in the input set.In this study, we investigated the correlation between the image quality metrics of MR images with the neural network segmentation accuracy.For that we have used the 3D DenseNet architecture and let the network trained on the same input but applying different methodologies to select the training data set based on the IQM values.The difference in the segmentation accuracy between models based on the random training inputs with IQM based training inputs shed light on the role of image quality metrics on segmentation accuracy.By running the image quality metrics to choose the training inputs,further we may tune the learning efficiency of the network and the segmentation accuracy.
関連論文リスト
- Increasing the Accuracy of a Neural Network Using Frequency Selective
Mesh-to-Grid Resampling [4.211128681972148]
ニューラルネットワークの入力データの処理にFSMR(Keypoint frequency selective mesh-to-grid resampling)を提案する。
ネットワークアーキテクチャや分類タスクによって、トレーニング中のFSMRの適用は学習プロセスに役立ちます。
ResNet50とOxflower17データセットの分類精度は最大4.31ポイント向上できる。
論文 参考訳(メタデータ) (2022-09-28T21:34:47Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Understanding the Influence of Receptive Field and Network Complexity in
Neural-Network-Guided TEM Image Analysis [0.0]
透過電子顕微鏡(TEM)画像において,ニューラルネットワークのアーキテクチャ選択がニューラルネットワークセグメントに与える影響を系統的に検討した。
背景からナノ粒子を区別するために振幅コントラストに依存した低分解能TEM画像の場合、受容場はセグメンテーション性能に有意な影響を与えない。
一方、ナノ粒子を識別するために振幅と位相コントラストの組合せに依存する高分解能TEM画像では、受容場が性能向上の鍵となるパラメータである。
論文 参考訳(メタデータ) (2022-04-08T18:45:15Z) - Multiscale Convolutional Transformer with Center Mask Pretraining for
Hyperspectral Image Classificationtion [14.33259265286265]
本稿では,空間スペクトル情報の効率的な抽出を実現するために,高スペクトル画像(HSI)のための高速多スケール畳み込みモジュールを提案する。
マスクオートエンコーダと同様に、我々の事前学習法は、エンコーダ内の中央画素の対応するトークンのみをマスクし、残りのトークンをデコーダに入力し、中央画素のスペクトル情報を再構成する。
論文 参考訳(メタデータ) (2022-03-09T14:42:26Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
我々は、補助的な問題を解決するために、対照的な対の目的を用いて深層畳み込みニューラルネットワーク(CNN)を訓練する。
本研究では,最新のNR画像品質モデルと比較して,ContriQUEが競争性能を向上することを示す。
以上の結果から,大きなラベル付き主観的画像品質データセットを必要とせずに,知覚的関連性を持つ強力な品質表現が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-25T21:01:00Z) - Knowledge Distillation By Sparse Representation Matching [107.87219371697063]
本稿では,一方の畳み込みネットワーク(cnn)から他方へ,スパース表現を用いて中間知識を伝達するスパース表現マッチング(srm)を提案する。
勾配降下を利用して効率的に最適化し、任意のCNNにプラグアンドプレイで統合できるニューラルプロセッシングブロックとして定式化します。
実験の結果,教師と生徒のネットワーク間のアーキテクチャの違いに頑健であり,複数のデータセットにまたがる他のkd技術よりも優れていた。
論文 参考訳(メタデータ) (2021-03-31T11:47:47Z) - Learning With Context Feedback Loop for Robust Medical Image
Segmentation [1.881091632124107]
2つのシステムを用いた医用画像セグメンテーションのための完全自動深層学習法を提案する。
1つ目は、入力画像からセグメンテーション結果を予測するエンコーダデコーダcnnのフォワードシステムである。
フォワードシステムの予測確率出力は、完全な畳み込みネットワーク(FCN)ベースのコンテキストフィードバックシステムによって符号化される。
論文 参考訳(メタデータ) (2021-03-04T05:44:59Z) - Exploring Intensity Invariance in Deep Neural Networks for Brain Image
Registration [0.0]
深層学習に基づく画像登録における入力画像対間の強度分布の影響について検討する。
構造的類似性に基づく損失をトレーニングしたディープラーニングモデルは、両方のデータセットでよりよく機能しているようだ。
論文 参考訳(メタデータ) (2020-09-21T17:49:03Z) - Learning to Learn Parameterized Classification Networks for Scalable
Input Images [76.44375136492827]
畳み込みニューラルネットワーク(CNN)は、入力解像度の変化に関して予測可能な認識動作を持たない。
我々はメタラーナーを用いて、様々な入力スケールのメインネットワークの畳み込み重みを生成する。
さらに、異なる入力解像度に基づいて、モデル予測よりもフライでの知識蒸留を利用する。
論文 参考訳(メタデータ) (2020-07-13T04:27:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。