A Memory Hierarchy for Many-Body Localization: Emulating the
Thermodynamic Limit
- URL: http://arxiv.org/abs/2111.01146v2
- Date: Mon, 25 Jul 2022 19:30:43 GMT
- Title: A Memory Hierarchy for Many-Body Localization: Emulating the
Thermodynamic Limit
- Authors: Alex Nico-Katz, Abolfazl Bayat, Sougato Bose
- Abstract summary: Local memory is the ability to extract information from a subsystem about its initial state.
We introduce, investigate, and compare several information-theoretic quantifications of memory.
We suggest that one can emulate the thermodynamic limit by artifically decohering otherwise quantum quantities.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Local memory - the ability to extract information from a subsystem about its
initial state - is a central feature of many-body localization. We introduce,
investigate, and compare several information-theoretic quantifications of
memory and discover a hierarchical relationship among them. We also find that
while the Holevo quantity is the most complete quantifier of memory, vastly
outperforming the imbalance, its decohered counterpart is significantly better
at capturing the critical properties of the many-body localization transition
at small system sizes. This motivates our suggestion that one can emulate the
thermodynamic limit by artifically decohering otherwise quantum quantities.
Applying this method to the von Neumann entropy results in critical exponents
consistent with analytic predictions, a feature missing from similar small
finite-size system treatments. In addition, the decohering process makes
experiments significantly simpler by avoiding quantum state tomography.
Related papers
- Asymptotic quantification of entanglement with a single copy [8.056359341994941]
This paper introduces a new way of benchmarking the protocol of entanglement distillation (purification)
Instead of measuring its yield, we focus on the best error achievable.
We show this solution to be given by the reverse relative entropy of entanglement, a single-letter quantity that can be evaluated using only a single copy of a quantum state.
arXiv Detail & Related papers (2024-08-13T17:57:59Z) - Quantum information scrambling in adiabatically-driven critical systems [49.1574468325115]
Quantum information scrambling refers to the spread of the initially stored information over many degrees of freedom of a quantum many-body system.
Here, we extend the notion of quantum information scrambling to critical quantum many-body systems undergoing an adiabatic evolution.
arXiv Detail & Related papers (2024-08-05T18:00:05Z) - Many-body entropies and entanglement from polynomially-many local measurements [0.26388783516590225]
We show that efficient estimation strategies exist under the assumption that all the spatial correlation lengths are finite.
We argue that our method could be practically useful to detect bipartite mixed-state entanglement for large numbers of qubits available in today's quantum platforms.
arXiv Detail & Related papers (2023-11-14T12:13:15Z) - Postselection-free learning of measurement-induced quantum dynamics [0.0]
We introduce a general-purpose scheme that can be used to infer any property of the post-measurement ensemble of states.
As an immediate application, we show that our method can be used to verify the emergence of quantum state designs in experiments.
arXiv Detail & Related papers (2023-10-06T11:06:06Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Scalable approach to many-body localization via quantum data [69.3939291118954]
Many-body localization is a notoriously difficult phenomenon from quantum many-body physics.
We propose a flexible neural network based learning approach that circumvents any computationally expensive step.
Our approach can be applied to large-scale quantum experiments to provide new insights into quantum many-body physics.
arXiv Detail & Related papers (2022-02-17T19:00:09Z) - Relative Entropy of Random States and Black Holes [0.0]
We study the relative entropy of highly excited quantum states.
We develop a large-N diagrammatic technique for the relative entropy.
We find that black hole microstates are distinguishable even when the observer has arbitrarily small access to the quantum state.
arXiv Detail & Related papers (2021-02-09T19:00:01Z) - Information-Theoretic Memory Scaling in the Many-Body Localization
Transition [68.8204255655161]
We study the understanding of local memory in the context of many-body localization.
We introduce the dynamical Holevo quantity as the true quantifier of local memory.
We find clear scaling behavior in its steady-state across the many-body localization transition.
arXiv Detail & Related papers (2020-09-09T18:00:01Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.