Asymptotic quantification of entanglement with a single copy
- URL: http://arxiv.org/abs/2408.07067v1
- Date: Tue, 13 Aug 2024 17:57:59 GMT
- Title: Asymptotic quantification of entanglement with a single copy
- Authors: Ludovico Lami, Mario Berta, Bartosz Regula,
- Abstract summary: This paper introduces a new way of benchmarking the protocol of entanglement distillation (purification)
Instead of measuring its yield, we focus on the best error achievable.
We show this solution to be given by the reverse relative entropy of entanglement, a single-letter quantity that can be evaluated using only a single copy of a quantum state.
- Score: 8.056359341994941
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the central importance of quantum entanglement in fueling many quantum technologies, the understanding of the optimal ways to exploit it is still beyond our reach, and even measuring entanglement in an operationally meaningful way is prohibitively difficult. This is due to the need to precisely characterise many-copy, asymptotic protocols for entanglement processing. Here we overcome these issues by introducing a new way of benchmarking the fundamental protocol of entanglement distillation (purification), where instead of measuring its asymptotic yield, we focus on the best achievable error. We connect this formulation of the task with an information-theoretic problem in composite quantum hypothesis testing known as generalised Sanov's theorem. By solving the latter problem -- which had no previously known solution even in classical information theory -- we thus compute the optimal asymptotic error exponent of entanglement distillation. We show this asymptotic solution to be given by the reverse relative entropy of entanglement, a single-letter quantity that can be evaluated using only a single copy of a quantum state, which is a unique feature among operational measures of entanglement. Altogether, we thus demonstrate a measure of entanglement that admits a direct operational interpretation as the optimal asymptotic rate of an important entanglement manipulation protocol while enjoying an exact, single-letter formula.
Related papers
- SDP for One-shot Dilution of Quantum Coherence [0.0]
We find a semidefinite program of one-shot coherence dilution of pure state under maximally incoherent operation.
We further give a similar but not semidefinite program form under dephasing-covariant incoherent operation.
Our numerical experiment clearly demonstrates that the maximally incoherent operation and dephasing-covariant incoherent operation have different power in the coherence dilution.
arXiv Detail & Related papers (2024-09-13T14:39:04Z) - Computable entanglement cost [4.642647756403864]
We consider the problem of computing the entanglement cost of preparing noisy quantum states under quantum operations with positive partial transpose (PPT)
A previously claimed solution to this problem is shown to be incorrect. We construct instead an alternative solution in the form of two hierarchies of semi-definite programs that converge to the true value of the entanglement cost from above and from below.
Our main result establishes that this convergence happens exponentially fast, thus yielding an efficient algorithm that approximates the cost up to an additive error $varepsilon$ in time.
arXiv Detail & Related papers (2024-05-15T18:00:01Z) - Tight One-Shot Analysis for Convex Splitting with Applications in
Quantum Information Theory [23.18400586573435]
We establish a one-shot error exponent and a one-shot strong converse for convex splitting with trace distance as an error criterion.
This leads to new one-shot exponent results in various tasks such as communication over quantum wiretap channels, secret key distillation, one-way quantum message compression, quantum measurement simulation, and quantum channel coding with side information at the transmitter.
arXiv Detail & Related papers (2023-04-24T12:47:37Z) - Enhancing Quantum Computation via Superposition of Quantum Gates [1.732837834702512]
We present different protocols, which we denote as "superposed quantum error mitigation"
We show that significant noise suppression can be achieved for most kinds of decoherence and standard experimental parameter regimes.
We analyze our approach for gate-based, measurement-based and interferometric-based models.
arXiv Detail & Related papers (2023-04-17T18:01:05Z) - Analyzing Prospects for Quantum Advantage in Topological Data Analysis [35.423446067065576]
We analyze and optimize an improved quantum algorithm for topological data analysis.
We show that super-quadratic quantum speedups are only possible when targeting a multiplicative error approximation.
We argue that quantum circuits with tens of billions of Toffoli can solve seemingly classically intractable instances.
arXiv Detail & Related papers (2022-09-27T17:56:15Z) - Overcoming entropic limitations on asymptotic state transformations
through probabilistic protocols [12.461503242570641]
We show that it is no longer the case when one allows protocols that may only succeed with some probability.
We show that this is no longer the case when one allows protocols that may only succeed with some probability.
arXiv Detail & Related papers (2022-09-07T18:00:00Z) - Entanglement and Quantum Correlation Measures from a Minimum Distance
Principle [0.0]
Entanglement, and quantum correlation, are precious resources for quantum technologies implementation based on quantum information science.
We derive an explicit measure able to quantify the degree of quantum correlation for pure or mixed multipartite states.
We prove that our entanglement measure is textitfaithful in the sense that it vanishes only on the set of separable states.
arXiv Detail & Related papers (2022-05-14T22:18:48Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Tight Exponential Analysis for Smoothing the Max-Relative Entropy and
for Quantum Privacy Amplification [56.61325554836984]
The max-relative entropy together with its smoothed version is a basic tool in quantum information theory.
We derive the exact exponent for the decay of the small modification of the quantum state in smoothing the max-relative entropy based on purified distance.
arXiv Detail & Related papers (2021-11-01T16:35:41Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.