論文の概要: Learning to Operate an Electric Vehicle Charging Station Considering
Vehicle-grid Integration
- arxiv url: http://arxiv.org/abs/2111.01294v1
- Date: Mon, 1 Nov 2021 23:10:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-03 14:02:01.641469
- Title: Learning to Operate an Electric Vehicle Charging Station Considering
Vehicle-grid Integration
- Title(参考訳): 車両グリッド統合を考慮した電気自動車充電ステーションの運転学習
- Authors: Zuzhao Ye, Yuanqi Gao, Nanpeng Yu
- Abstract要約: 本稿では、充電ステーションの利益を最大化するために、新しい集中的アロケーションと分散実行(CADE)強化学習(RL)フレームワークを提案する。
集中配置プロセスでは、EVを待機スポットまたは充電スポットに割り当て、分散実行プロセスでは、各充電器は、共有再生メモリからアクション値関数を学習しながら、独自の充電/放電判定を行う。
数値計算により,提案したCADEフレームワークは計算効率が高く,拡張性も高く,ベースラインモデル予測制御(MPC)よりも優れていた。
- 参考スコア(独自算出の注目度): 4.855689194518905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid adoption of electric vehicles (EVs) calls for the widespread
installation of EV charging stations. To maximize the profitability of charging
stations, intelligent controllers that provide both charging and electric grid
services are in great need. However, it is challenging to determine the optimal
charging schedule due to the uncertain arrival time and charging demands of
EVs. In this paper, we propose a novel centralized allocation and decentralized
execution (CADE) reinforcement learning (RL) framework to maximize the charging
station's profit. In the centralized allocation process, EVs are allocated to
either the waiting or charging spots. In the decentralized execution process,
each charger makes its own charging/discharging decision while learning the
action-value functions from a shared replay memory. This CADE framework
significantly improves the scalability and sample efficiency of the RL
algorithm. Numerical results show that the proposed CADE framework is both
computationally efficient and scalable, and significantly outperforms the
baseline model predictive control (MPC). We also provide an in-depth analysis
of the learned action-value function to explain the inner working of the
reinforcement learning agent.
- Abstract(参考訳): 電気自動車(EV)の急速な普及により、EV充電ステーションの広範な設置が求められている。
充電ステーションの収益性を最大化するために、充電と電気グリッドサービスの両方を提供するインテリジェントコントローラが大いに求められている。
しかし,EVの到着時間や充電要求が不確実であることから,最適な充電スケジュールを決定することは困難である。
本稿では、充電ステーションの利益を最大化するために、新しい集中型アロケーションと分散実行(CADE)強化学習(RL)フレームワークを提案する。
集中配置プロセスでは、EVは待機スポットまたは充電スポットに割り当てられる。
分散実行プロセスでは、各充電器は共有リプレイメモリからアクション値関数を学習しながら、独自の充電/放電決定を行う。
このCADEフレームワークはRLアルゴリズムのスケーラビリティとサンプル効率を大幅に改善する。
数値計算により,提案したCADEフレームワークは計算効率が高く,拡張性も高く,ベースラインモデル予測制御(MPC)よりも優れていた。
また,強化学習エージェントの内部動作を説明するために,学習した行動値関数の詳細な分析を行う。
関連論文リスト
- Centralized vs. Decentralized Multi-Agent Reinforcement Learning for Enhanced Control of Electric Vehicle Charging Networks [1.9188272016043582]
本稿では,MARL(Multi-Agent Reinforcement Learning)フレームワークを用いた分散・協調型充電戦略の新たなアプローチを提案する。
本手法は, 住宅街におけるEV群を対象としたDDPGアルゴリズムに基づいて構築した。
以上の結果から, CTDE-DDPGフレームワークは, 政策のばらつきや訓練の複雑さが高いにもかかわらず, 総変動率を約36パーセント, 充電コストを平均9.1程度削減することにより, 充電効率を著しく向上させることが示唆された。
論文 参考訳(メタデータ) (2024-04-18T21:50:03Z) - Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
電気自動車充電ステーション(EVCS)は、グリーントランスポートの実現に向けた重要なステップとなる。
我々は、攻撃者がスマート充電操作中に交換された情報を操作しているEV充電に対する充電操作攻撃(CMA)を調査した。
本稿では,EV充電に関わるパラメータを監視してCMAを検出する,教師なしのディープラーニングに基づくメカニズムを提案する。
論文 参考訳(メタデータ) (2023-10-18T18:38:59Z) - Fast-ELECTRA for Efficient Pre-training [83.29484808667532]
ELECTRAは補助モデルに置き換えられたシーケンス内のトークンを検出して、言語モデルを事前訓練する。
本稿では,既存の言語モデルを補助モデルとして活用したFast-ELECTRAを提案する。
提案手法は,最先端のELECTRA型事前学習手法の性能に匹敵するが,補助モデルの連成学習による計算とメモリコストは著しく削減される。
論文 参考訳(メタデータ) (2023-10-11T09:55:46Z) - An Efficient Distributed Multi-Agent Reinforcement Learning for EV
Charging Network Control [2.5477011559292175]
本稿では,EV所有者のプライバシ保護を優先する分散マルチエージェント強化学習(MARL)充電フレームワークを提案する。
その結果、CTDEフレームワークは、ネットワークコストを削減し、充電ネットワークの性能を向上させることを示した。
論文 参考訳(メタデータ) (2023-08-24T16:53:52Z) - Federated Reinforcement Learning for Electric Vehicles Charging Control
on Distribution Networks [42.04263644600909]
マルチエージェント深部強化学習(MADRL)はEV充電制御において有効であることが証明されている。
既存のMADRLベースのアプローチでは、配電ネットワークにおけるEV充電/放電の自然な電力フローを考慮できない。
本稿では,マルチEV充電/放電と最適電力流で動作する放射分布ネットワーク(RDN)を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-17T05:34:46Z) - Computationally efficient joint coordination of multiple electric
vehicle charging points using reinforcement learning [6.37470346908743]
今日の電力網における大きな課題は、電気自動車(EV)充電による負荷の増加を管理することである。
同時に複数の充電点を協調的に座標する単一ステップの解法を提案する。
我々の新しいRLソリューションは、ビジネス・アズ・ユース・ポリシーと比較して、充電需要調整の性能を40~50%向上させています。
論文 参考訳(メタデータ) (2022-03-26T13:42:57Z) - Optimized cost function for demand response coordination of multiple EV
charging stations using reinforcement learning [6.37470346908743]
我々は、複数の充電ステーションを同時に調整するマルコフ決定プロセス(MDP)に基づいて、RLに関する以前の研究に基づいて構築する。
我々は、基本的に、学習した制御ポリシーに対して、柔軟性を提供しない充電需要を常に満たすよう強制するコスト関数の改善を提案する。
提案したバッチRLのQ-iteration実装を,実世界のデータを用いて,オリジナル(コスト)のQ-iteration実装と厳密に比較する。
論文 参考訳(メタデータ) (2022-03-03T11:22:27Z) - Efficient Representation for Electric Vehicle Charging Station
Operations using Reinforcement Learning [5.815007821143811]
我々は、EV充電の緊急時、すなわち遅延値に基づくアグリゲーションスキームを開発する。
EVCSの総充電パワーのみを考慮するために、最低遅延第一規則(LLF)が採用されている。
また,同じ最適政策を達成するための等価な状態アグリゲーションを提案する。
論文 参考訳(メタデータ) (2021-08-07T00:34:48Z) - A Deep Value-network Based Approach for Multi-Driver Order Dispatching [55.36656442934531]
そこで本研究では,注文発送のための深層強化学習に基づくソリューションを提案する。
DiDiの配車プラットフォーム上で大規模なオンラインA/Bテストを実施している。
その結果,CVNetは近年提案されているディスパッチ手法よりも一貫して優れていた。
論文 参考訳(メタデータ) (2021-06-08T16:27:04Z) - Demand-Side Scheduling Based on Multi-Agent Deep Actor-Critic Learning
for Smart Grids [56.35173057183362]
家庭用家電をネットでスケジュールできるスマートメーターが各家庭に備わっている需要側エネルギー管理の問題点を考察する。
目標は、リアルタイムの料金体系の下で全体のコストを最小化することです。
マルコフゲームとしてスマートグリッド環境の定式化を提案する。
論文 参考訳(メタデータ) (2020-05-05T07:32:40Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。