On the Current and Emerging Challenges of Developing Fair and Ethical AI
Solutions in Financial Services
- URL: http://arxiv.org/abs/2111.01306v1
- Date: Tue, 2 Nov 2021 00:15:04 GMT
- Title: On the Current and Emerging Challenges of Developing Fair and Ethical AI
Solutions in Financial Services
- Authors: Eren Kurshan and Jiahao Chen and Victor Storchan and Hongda Shen
- Abstract summary: We show how practical considerations reveal the gaps between high-level principles and concrete, deployed AI applications.
We show how practical considerations reveal the gaps between high-level principles and concrete, deployed AI applications.
- Score: 1.911678487931003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) continues to find more numerous and more
critical applications in the financial services industry, giving rise to fair
and ethical AI as an industry-wide objective. While many ethical principles and
guidelines have been published in recent years, they fall short of addressing
the serious challenges that model developers face when building ethical AI
solutions. We survey the practical and overarching issues surrounding model
development, from design and implementation complexities, to the shortage of
tools, and the lack of organizational constructs. We show how practical
considerations reveal the gaps between high-level principles and concrete,
deployed AI applications, with the aim of starting industry-wide conversations
toward solution approaches.
Related papers
- Comprehensive Overview of Artificial Intelligence Applications in Modern Industries [0.3374875022248866]
This paper explores the applications of AI across four key sectors: healthcare, finance, manufacturing, and retail.
We discuss the implications of AI integration, including ethical considerations, the future trajectory of AI development, and its potential to drive economic growth.
arXiv Detail & Related papers (2024-09-19T19:22:52Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - POLARIS: A framework to guide the development of Trustworthy AI systems [3.02243271391691]
There is a significant gap between high-level AI ethics principles and low-level concrete practices for AI professionals.
We develop a novel holistic framework for Trustworthy AI - designed to bridge the gap between theory and practice.
Our goal is to empower AI professionals to confidently navigate the ethical dimensions of Trustworthy AI.
arXiv Detail & Related papers (2024-02-08T01:05:16Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Towards Implementing Responsible AI [22.514717870367623]
We propose four aspects of AI system design and development, adapting processes used in software engineering.
The salient findings cover four aspects of AI system design and development, adapting processes used in software engineering.
arXiv Detail & Related papers (2022-05-09T14:59:23Z) - Software Engineering for Responsible AI: An Empirical Study and
Operationalised Patterns [20.747681252352464]
We propose a template that enables AI ethics principles to be operationalised in the form of concrete patterns.
These patterns provide concrete, operationalised guidance that facilitate the development of responsible AI systems.
arXiv Detail & Related papers (2021-11-18T02:18:27Z) - Beyond Fairness Metrics: Roadblocks and Challenges for Ethical AI in
Practice [2.1485350418225244]
We review practical challenges in building and deploying ethical AI at the scale of contemporary industrial and societal uses.
We argue that a holistic consideration of ethics in the development and deployment of AI systems is necessary for building ethical AI in practice.
arXiv Detail & Related papers (2021-08-11T18:33:17Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.