論文の概要: Constructing Neural Network-Based Models for Simulating Dynamical
Systems
- arxiv url: http://arxiv.org/abs/2111.01495v1
- Date: Tue, 2 Nov 2021 10:51:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-03 14:01:26.848191
- Title: Constructing Neural Network-Based Models for Simulating Dynamical
Systems
- Title(参考訳): 力学系をシミュレートするニューラルネットワークモデルの構築
- Authors: Christian M{\o}ldrup Legaard, Thomas Schranz, Gerald Schweiger, J\'an
Drgo\v{n}a, Basak Falay, Cl\'audio Gomes, Alexandros Iosifidis, Mahdi Abkar,
Peter Gorm Larsen
- Abstract要約: データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
- 参考スコア(独自算出の注目度): 59.0861954179401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamical systems see widespread use in natural sciences like physics,
biology, chemistry, as well as engineering disciplines such as circuit
analysis, computational fluid dynamics, and control. For simple systems, the
differential equations governing the dynamics can be derived by applying
fundamental physical laws. However, for more complex systems, this approach
becomes exceedingly difficult. Data-driven modeling is an alternative paradigm
that seeks to learn an approximation of the dynamics of a system using
observations of the true system. In recent years, there has been an increased
interest in data-driven modeling techniques, in particular neural networks have
proven to provide an effective framework for solving a wide range of tasks.
This paper provides a survey of the different ways to construct models of
dynamical systems using neural networks. In addition to the basic overview, we
review the related literature and outline the most significant challenges from
numerical simulations that this modeling paradigm must overcome. Based on the
reviewed literature and identified challenges, we provide a discussion on
promising research areas.
- Abstract(参考訳): 力学系は、物理、生物学、化学などの自然科学や、回路解析、計算流体力学、制御といった工学分野に広く用いられている。
単純な系の場合、微分方程式は基本的な物理法則を適用することで導出することができる。
しかし、より複雑なシステムでは、このアプローチは非常に困難になる。
データ駆動モデリングは、真のシステムの観察を用いてシステムのダイナミクスの近似を学ぶための別のパラダイムである。
近年、データ駆動モデリング技術への関心が高まっており、特にニューラルネットワークは幅広いタスクを解決するための効果的なフレームワークを提供することが証明されている。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概観に加えて,関連する文献を概観し,このモデリングパラダイムが克服すべき数値シミュレーションの最も重要な課題を概説する。
レビューした文献と特定課題に基づき,有望な研究分野に関する議論を行う。
関連論文リスト
- Discovering Governing equations from Graph-Structured Data by Sparse Identification of Nonlinear Dynamical Systems [0.27624021966289597]
グラフ構造化データ(SINDyG)から動的システムのスパース同定法を開発した。
SINDyGは、ネットワーク構造をスパースレグレッションに組み込んで、基礎となるネットワーク力学を説明するモデルパラメータを識別する。
論文 参考訳(メタデータ) (2024-09-02T17:51:37Z) - Learning System Dynamics without Forgetting [60.08612207170659]
未知の力学を持つ系の軌道予測は、物理学や生物学を含む様々な研究分野において重要である。
本稿では,モードスイッチンググラフODE (MS-GODE) の新たなフレームワークを提案する。
生体力学の異なる多様な系を特徴とする生体力学システムの新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-30T14:55:18Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - CoDBench: A Critical Evaluation of Data-driven Models for Continuous
Dynamical Systems [8.410938527671341]
微分方程式を解くための11の最先端データ駆動モデルからなる総合ベンチマークスイートであるCodBenchを紹介する。
具体的には、Viz.、フィードフォワードニューラルネットワーク、ディープオペレータ回帰モデル、周波数ベースのニューラル演算子、トランスフォーマーアーキテクチャの4つの異なるカテゴリを評価する。
我々は、学習におけるオペレータの能力、ゼロショット超解像、データ効率、ノイズに対する堅牢性、計算効率を評価する広範な実験を行う。
論文 参考訳(メタデータ) (2023-10-02T21:27:54Z) - Interpretable learning of effective dynamics for multiscale systems [5.754251195342313]
iLED(Interpretable Learning Effective Dynamics)の新たな枠組みを提案する。
iLEDは、最先端のリカレントニューラルネットワークベースのアプローチに匹敵する精度を提供する。
その結果、iLEDフレームワークは正確な予測を生成でき、解釈可能なダイナミクスを得ることができることがわかった。
論文 参考訳(メタデータ) (2023-09-11T20:29:38Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
第一原則の手法は高いバイアスに悩まされるが、データ駆動モデリングは高いばらつきを持つ傾向がある。
本稿では,2つのモデリング手法を組み合わせて上記の問題を解くハイブリッドモデルであるPINODEについて述べる。
本研究の目的は,機械系のモデルベース制御とシステム同定である。
論文 参考訳(メタデータ) (2020-05-29T15:10:43Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。