論文の概要: Detection of Hate Speech using BERT and Hate Speech Word Embedding with
Deep Model
- arxiv url: http://arxiv.org/abs/2111.01515v1
- Date: Tue, 2 Nov 2021 11:42:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-03 14:11:48.516862
- Title: Detection of Hate Speech using BERT and Hate Speech Word Embedding with
Deep Model
- Title(参考訳): 深部モデルを用いたBERTとヘイトスピーチ単語を用いたヘイトスピーチの検出
- Authors: Hind Saleh, Areej Alhothali, Kawthar Moria
- Abstract要約: 本稿では,双方向LSTMに基づくディープモデルにドメイン固有の単語を埋め込み,ヘイトスピーチを自動的に検出・分類する可能性について検討する。
実験の結果、Bidirectional LSTMベースのディープモデルによるドメイン固有単語の埋め込みは93%のf1スコアを獲得し、BERTは96%のf1スコアを達成した。
- 参考スコア(独自算出の注目度): 0.5801044612920815
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The enormous amount of data being generated on the web and social media has
increased the demand for detecting online hate speech. Detecting hate speech
will reduce their negative impact and influence on others. A lot of effort in
the Natural Language Processing (NLP) domain aimed to detect hate speech in
general or detect specific hate speech such as religion, race, gender, or
sexual orientation. Hate communities tend to use abbreviations, intentional
spelling mistakes, and coded words in their communication to evade detection,
adding more challenges to hate speech detection tasks. Thus, word
representation will play an increasingly pivotal role in detecting hate speech.
This paper investigates the feasibility of leveraging domain-specific word
embedding in Bidirectional LSTM based deep model to automatically
detect/classify hate speech. Furthermore, we investigate the use of the
transfer learning language model (BERT) on hate speech problem as a binary
classification task. The experiments showed that domainspecific word embedding
with the Bidirectional LSTM based deep model achieved a 93% f1-score while BERT
achieved up to 96% f1-score on a combined balanced dataset from available hate
speech datasets.
- Abstract(参考訳): ウェブやソーシャルメディアで大量のデータが生成され、オンラインヘイトスピーチ検出の需要が高まっている。
ヘイトスピーチの検出は、そのネガティブな影響と他人への影響を減少させる。
自然言語処理(NLP)分野における多くの取り組みは、一般的にヘイトスピーチを検出したり、宗教、人種、性別、性的指向といった特定のヘイトスピーチを検出することを目的としている。
ヘイト・コミュニティは、誤字、意図的な綴りミス、コード化された単語をコミュニケーションに用いて検出を回避し、音声検出タスクを嫌う問題を増やす傾向にある。
したがって、言葉表現はヘイトスピーチの検出において、ますます重要な役割を果たす。
本稿では,双方向LSTMに基づくディープモデルにドメイン固有の単語を埋め込み,ヘイトスピーチを自動的に検出・分類する可能性について検討する。
さらに,ヘイトスピーチ問題に対する伝達学習言語モデル (BERT) の使用を二項分類タスクとして検討した。
実験により、双方向lstmベースのディープモデルによるドメイン固有単語埋め込みは93%のf1-scoreを達成し、bertは利用可能なヘイトスピーチデータセットから合計96%のf1-scoreを達成した。
関連論文リスト
- Hierarchical Sentiment Analysis Framework for Hate Speech Detection: Implementing Binary and Multiclass Classification Strategy [0.0]
本稿では,英語におけるヘイトスピーチを検出するために,共有感情表現と統合された新しいマルチタスクモデルを提案する。
我々は、感情分析とトランスフォーマーに基づく訓練モデルを利用することで、複数のデータセット間でのヘイトスピーチの検出を大幅に改善できると結論付けた。
論文 参考訳(メタデータ) (2024-11-03T04:11:33Z) - An Investigation of Large Language Models for Real-World Hate Speech
Detection [46.15140831710683]
既存の手法の大きな制限は、ヘイトスピーチ検出がコンテキストの問題である点である。
近年,大規模言語モデル (LLM) はいくつかの自然言語処理において最先端の性能を示した。
本研究は, ヘイトスピーチの文脈を効果的に把握する上で, 巧妙な推論プロンプトが有効であることを明らかにする。
論文 参考訳(メタデータ) (2024-01-07T00:39:33Z) - Hate Speech Detection via Dual Contrastive Learning [25.878271501274245]
本稿では,ヘイトスピーチ検出のための新しい双方向コントラスト学習フレームワークを提案する。
本フレームワークは,自己教師型学習と教師型学習の損失を協調的に最適化し,スパンレベルの情報を取得する。
公開可能な2つの英語データセットの実験を行い、実験結果から、提案モデルが最先端のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2023-07-10T13:23:36Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSynは、オンライン会話における暗黙のヘイトスピーチを検出するために、ユーザと会話のコンテキストを明示的に組み込んだ、コンテキスト中心のニューラルネットワークである。
我々は、CoSynが、1.24%から57.8%の範囲で絶対的に改善された暗黙のヘイトスピーチを検出することで、我々のベースラインを全て上回っていることを示す。
論文 参考訳(メタデータ) (2023-03-02T17:30:43Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
ここでは, ディープ・ヘイト・音声検出法と浅いヘイト・音声検出法を大規模に比較した。
私たちの目標は、この地域の進歩を照らし、現在の最先端の強みと弱点を特定することです。
そこで我々は,ヘイトスピーチ検出の実践的利用に関するガイダンスの提供,最先端の定量化,今後の研究方向の特定を目的としている。
論文 参考訳(メタデータ) (2022-02-19T03:48:20Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
音節や音素を含む言語単位に基づくLSTMに基づく新しい生成音声LMを提案する。
限られたデータセットでは、現代の生成モデルで要求されるものよりも桁違いに小さいので、我々のモデルはバブリング音声を近似する。
補助的なテキストLM,マルチタスク学習目標,補助的な調音特徴を用いた訓練の効果を示す。
論文 参考訳(メタデータ) (2021-10-31T22:48:30Z) - Unsupervised Domain Adaptation for Hate Speech Detection Using a Data
Augmentation Approach [6.497816402045099]
ヘイトスピーチ検出のためのラベル付きデータを拡張するための教師なし領域適応手法を提案する。
精度/リコール曲線の領域を最大42%改善し,278%改善した。
論文 参考訳(メタデータ) (2021-07-27T15:01:22Z) - AngryBERT: Joint Learning Target and Emotion for Hate Speech Detection [5.649040805759824]
本論文では,感情分類によるヘイトスピーチ検出と,二次的関連タスクとしてのターゲット同定を共同学習するマルチタスク学習型モデルであるAngryBERTを提案する。
実験の結果,AngryBERTは最先端のシングルタスク学習やマルチタスク学習のベースラインよりも優れていた。
論文 参考訳(メタデータ) (2021-03-14T16:17:26Z) - Learning Explicit Prosody Models and Deep Speaker Embeddings for
Atypical Voice Conversion [60.808838088376675]
本稿では,明示的な韻律モデルと深層話者埋め込み学習を用いたVCシステムを提案する。
韻律補正器は音素埋め込みを取り入れ、典型的な音素持続時間とピッチ値を推定する。
変換モデルは、音素埋め込みと典型的な韻律特徴を入力として、変換された音声を生成する。
論文 参考訳(メタデータ) (2020-11-03T13:08:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。