論文の概要: Dealing with Annotator Disagreement in Hate Speech Classification
- arxiv url: http://arxiv.org/abs/2502.08266v1
- Date: Wed, 12 Feb 2025 10:19:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:51:03.580042
- Title: Dealing with Annotator Disagreement in Hate Speech Classification
- Title(参考訳): ヘイト音声分類におけるアノテータの分解処理
- Authors: Somaiyeh Dehghan, Mehmet Umut Sen, Berrin Yanikoglu,
- Abstract要約: 本稿では,アノテータの不一致に対処するための戦略について検討する。
トルコのつぶやきにおけるヘイトスピーチ分類に関するアノテータの不一致に対処するための様々なアプローチを、細調整されたBERTモデルに基づいて評価した。
本研究は,問題の重要性を強調し,オンライン談話におけるヘイトスピーチの検出と理解のための最先端のベンチマーク結果を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Hate speech detection is a crucial task, especially on social media, where harmful content can spread quickly. Implementing machine learning models to automatically identify and address hate speech is essential for mitigating its impact and preventing its proliferation. The first step in developing an effective hate speech detection model is to acquire a high-quality dataset for training. Labeled data is foundational for most natural language processing tasks, but categorizing hate speech is difficult due to the diverse and often subjective nature of hate speech, which can lead to varying interpretations and disagreements among annotators. This paper examines strategies for addressing annotator disagreement, an issue that has been largely overlooked. In particular, we evaluate different approaches to deal with annotator disagreement regarding hate speech classification in Turkish tweets, based on a fine-tuned BERT model. Our work highlights the importance of the problem and provides state-of-art benchmark results for detection and understanding of hate speech in online discourse.
- Abstract(参考訳): ヘイトスピーチの検出は、特に有害なコンテンツが急速に拡散するソーシャルメディアにおいて重要な課題である。
ヘイトスピーチを自動的に識別し、対処するために機械学習モデルを実装することは、その影響を緩和し、その増殖を防ぐために不可欠である。
効果的なヘイトスピーチ検出モデルを開発する第一歩は、トレーニングのための高品質なデータセットを取得することである。
ラベル付きデータは、ほとんどの自然言語処理タスクに基礎を置いているが、ヘイトスピーチの多様かつしばしば主観的な性質のため、ヘイトスピーチの分類は困難であり、アノテータ間の解釈や意見の相違につながる可能性がある。
本稿では,アノテータの不一致に対処するための戦略について検討する。
特に,トルコのつぶやきにおけるヘイトスピーチ分類に関するアノテータの不一致に対処するための様々なアプローチを,細調整されたBERTモデルに基づいて評価した。
本研究は,問題の重要性を強調し,オンライン談話におけるヘイトスピーチの検出と理解のための最先端のベンチマーク結果を提供する。
関連論文リスト
- Hierarchical Sentiment Analysis Framework for Hate Speech Detection: Implementing Binary and Multiclass Classification Strategy [0.0]
本稿では,英語におけるヘイトスピーチを検出するために,共有感情表現と統合された新しいマルチタスクモデルを提案する。
我々は、感情分析とトランスフォーマーに基づく訓練モデルを利用することで、複数のデータセット間でのヘイトスピーチの検出を大幅に改善できると結論付けた。
論文 参考訳(メタデータ) (2024-11-03T04:11:33Z) - An Investigation of Large Language Models for Real-World Hate Speech
Detection [46.15140831710683]
既存の手法の大きな制限は、ヘイトスピーチ検出がコンテキストの問題である点である。
近年,大規模言語モデル (LLM) はいくつかの自然言語処理において最先端の性能を示した。
本研究は, ヘイトスピーチの文脈を効果的に把握する上で, 巧妙な推論プロンプトが有効であることを明らかにする。
論文 参考訳(メタデータ) (2024-01-07T00:39:33Z) - Hate Speech Detection via Dual Contrastive Learning [25.878271501274245]
本稿では,ヘイトスピーチ検出のための新しい双方向コントラスト学習フレームワークを提案する。
本フレームワークは,自己教師型学習と教師型学習の損失を協調的に最適化し,スパンレベルの情報を取得する。
公開可能な2つの英語データセットの実験を行い、実験結果から、提案モデルが最先端のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2023-07-10T13:23:36Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSynは、オンライン会話における暗黙のヘイトスピーチを検出するために、ユーザと会話のコンテキストを明示的に組み込んだ、コンテキスト中心のニューラルネットワークである。
我々は、CoSynが、1.24%から57.8%の範囲で絶対的に改善された暗黙のヘイトスピーチを検出することで、我々のベースラインを全て上回っていることを示す。
論文 参考訳(メタデータ) (2023-03-02T17:30:43Z) - ToKen: Task Decomposition and Knowledge Infusion for Few-Shot Hate
Speech Detection [85.68684067031909]
この問題を数ショットの学習タスクとみなし、タスクを「構成」部分に分解することで大きな成果を上げている。
さらに、推論データセット(例えばAtomic 2020)から知識を注入することで、パフォーマンスはさらに向上する。
論文 参考訳(メタデータ) (2022-05-25T05:10:08Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
ここでは, ディープ・ヘイト・音声検出法と浅いヘイト・音声検出法を大規模に比較した。
私たちの目標は、この地域の進歩を照らし、現在の最先端の強みと弱点を特定することです。
そこで我々は,ヘイトスピーチ検出の実践的利用に関するガイダンスの提供,最先端の定量化,今後の研究方向の特定を目的としている。
論文 参考訳(メタデータ) (2022-02-19T03:48:20Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - Detection of Hate Speech using BERT and Hate Speech Word Embedding with
Deep Model [0.5801044612920815]
本稿では,双方向LSTMに基づくディープモデルにドメイン固有の単語を埋め込み,ヘイトスピーチを自動的に検出・分類する可能性について検討する。
実験の結果、Bidirectional LSTMベースのディープモデルによるドメイン固有単語の埋め込みは93%のf1スコアを獲得し、BERTは96%のf1スコアを達成した。
論文 参考訳(メタデータ) (2021-11-02T11:42:54Z) - Latent Hatred: A Benchmark for Understanding Implicit Hate Speech [22.420275418616242]
この研究は、暗黙のヘイトスピーチの理論的に正当化された分類法と、各メッセージにきめ細かいラベルを付けたベンチマークコーパスを導入している。
本稿では、同時代のベースラインを用いて、暗黙のヘイトスピーチを検出し、説明するためにデータセットを体系的に分析する。
論文 参考訳(メタデータ) (2021-09-11T16:52:56Z) - AngryBERT: Joint Learning Target and Emotion for Hate Speech Detection [5.649040805759824]
本論文では,感情分類によるヘイトスピーチ検出と,二次的関連タスクとしてのターゲット同定を共同学習するマルチタスク学習型モデルであるAngryBERTを提案する。
実験の結果,AngryBERTは最先端のシングルタスク学習やマルチタスク学習のベースラインよりも優れていた。
論文 参考訳(メタデータ) (2021-03-14T16:17:26Z) - Learning Explicit Prosody Models and Deep Speaker Embeddings for
Atypical Voice Conversion [60.808838088376675]
本稿では,明示的な韻律モデルと深層話者埋め込み学習を用いたVCシステムを提案する。
韻律補正器は音素埋め込みを取り入れ、典型的な音素持続時間とピッチ値を推定する。
変換モデルは、音素埋め込みと典型的な韻律特徴を入力として、変換された音声を生成する。
論文 参考訳(メタデータ) (2020-11-03T13:08:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。