論文の概要: A modified gravity model based on network efficiency for vital nodes
identification in complex networks
- arxiv url: http://arxiv.org/abs/2111.01526v1
- Date: Tue, 12 Oct 2021 06:11:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-07 11:38:59.979052
- Title: A modified gravity model based on network efficiency for vital nodes
identification in complex networks
- Title(参考訳): ネットワーク効率に基づく複雑なネットワークにおけるノード同定のための修正重力モデル
- Authors: Hanwen Li, Qiuyan Shang, Yong Deng
- Abstract要約: ネットワーク効率重心性モデル(NEG)と呼ばれる新しい改良された重力モデルが,重力モデルとネットワーク効率を統合して提案されている。
提案手法の優位性を確固たるものにするため,実世界のネットワークの多様性に関する実験を行った。
- 参考スコア(独自算出の注目度): 3.383942690870476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vital nodes identification is an essential problem in network science.
Various methods have been proposed to solve this problem. In particular, based
on the gravity model, a series of improved gravity models are proposed to find
vital nodes better in complex networks. However, they still have the room to be
improved. In this paper, a novel and improved gravity model, which is named
network efficiency gravity centrality model (NEG), integrates gravity model and
network efficiency is proposed. Compared to other methods based on different
gravity models, the proposed method considers the effect of the nodes on
structure robustness of the network better. To solidate the superiority of the
proposed method, experiments on varieties of real-world networks are carried
out.
- Abstract(参考訳): 生きたノードの同定はネットワーク科学において重要な問題である。
この問題を解決するために様々な方法が提案されている。
特に、重力モデルに基づいて、複雑なネットワークにおいて重要なノードを見つけるために、一連の改良された重力モデルが提案されている。
しかし、改善の余地は残っている。
本稿では,ネットワーク効率重心性モデル (NEG) と名付けられ, 重力モデルとネットワーク効率を融合した, 新規で改良された重力モデルを提案する。
異なる重力モデルに基づく他の手法と比較して,提案手法はネットワークの構造的堅牢性に対するノードの影響をよく検討する。
提案手法の優位性を固めるために,実世界のネットワークの多様性に関する実験を行った。
関連論文リスト
- Robust Weight Initialization for Tanh Neural Networks with Fixed Point Analysis [5.016205338484259]
提案手法は既存手法よりもネットワークサイズの変化に頑健である。
物理インフォームドニューラルネットワークに適用すると、ネットワークサイズの変化に対するより高速な収束とロバスト性を示す。
論文 参考訳(メタデータ) (2024-10-03T06:30:27Z) - GFN: A graph feedforward network for resolution-invariant reduced operator learning in multifidelity applications [0.0]
本研究は,多忠実度アプリケーションのための新しい分解能不変モデルオーダー削減戦略を提案する。
我々はこの研究で開発された新しいニューラルネットワーク層、グラフフィードフォワードネットワークに基づいてアーキテクチャを構築した。
パラメトリックな偏微分方程式に対する自己エンコーダに基づく還元戦略において,異なるメッシュサイズでのトレーニングとテストの能力を利用する。
論文 参考訳(メタデータ) (2024-06-05T18:31:37Z) - Improved Generalization of Weight Space Networks via Augmentations [53.87011906358727]
深度重み空間(DWS)における学習は新たな研究方向であり、2次元および3次元神経場(INRs, NeRFs)への応用
我々は、この過度な適合の理由を実証的に分析し、主要な理由は、DWSデータセットの多様性の欠如であることがわかった。
そこで本研究では,重み空間におけるデータ拡張戦略について検討し,重み空間に適応したMixUp法を提案する。
論文 参考訳(メタデータ) (2024-02-06T15:34:44Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
独立サブネットワークトレーニング(IST)の理論的考察
ISTは、上記の問題を解決するための、最近提案され、非常に効果的である。
圧縮通信を用いた分散手法など,ISTと代替手法の基本的な違いを同定する。
論文 参考訳(メタデータ) (2023-06-28T18:14:22Z) - Information-Theoretic GAN Compression with Variational Energy-based
Model [36.77535324130402]
本稿では,情報理論に基づく知識蒸留手法を提案する。
提案アルゴリズムは,生成逆数ネットワークのモデル圧縮において,一貫した性能を実現する。
論文 参考訳(メタデータ) (2023-03-28T15:32:21Z) - Vital Node Identification in Complex Networks Using a Machine
Learning-Based Approach [12.898094758070474]
本稿では,重要なノード識別のための機械学習に基づくデータ駆動手法を提案する。
主な考え方は、グラフのごく一部、すなわち0.5%のノードでモデルをトレーニングし、残りのノードで予測を行うことである。
いくつかの機械学習モデルはノード表現に基づいて訓練されるが、最高の結果はRBFカーネルを備えたサポートベクトル回帰マシンによって達成される。
論文 参考訳(メタデータ) (2022-02-13T06:54:18Z) - Learning High-Dimensional Distributions with Latent Neural Fokker-Planck
Kernels [67.81799703916563]
低次元潜在空間におけるフォッカー・プランク方程式の解法として問題を定式化する新しい手法を導入する。
提案モデルでは,潜在分散モーフィング,ジェネレータ,パラメータ化Fokker-Planckカーネル関数からなる。
論文 参考訳(メタデータ) (2021-05-10T17:42:01Z) - Effective Version Space Reduction for Convolutional Neural Networks [61.84773892603885]
アクティブラーニングでは、サンプリングバイアスは深刻な矛盾問題を引き起こし、アルゴリズムが最適な仮説を見つけるのを妨げる可能性がある。
本稿では,畳み込みニューラルネットワークを用いた能動学習について,バージョン空間削減の原理的レンズを用いて検討する。
論文 参考訳(メタデータ) (2020-06-22T17:40:03Z) - Deep Unfolding Network for Image Super-Resolution [159.50726840791697]
本稿では,学習に基づく手法とモデルに基づく手法の両方を活用する,エンドツーエンドのトレーニング可能なアンフォールディングネットワークを提案する。
提案するネットワークは, モデルベース手法の柔軟性を継承し, 一つのモデルを用いて, 異なるスケール要因に対する, 曖昧でノイズの多い画像の超解像化を行う。
論文 参考訳(メタデータ) (2020-03-23T17:55:42Z) - Differentiable Sparsification for Deep Neural Networks [0.0]
本稿では,ディープニューラルネットワークのための完全微分可能なスペーシフィケーション手法を提案する。
提案手法は,ネットワークのスパース化構造と重み付けの両方をエンドツーエンドに学習することができる。
私たちの知る限りでは、これが最初の完全に差別化可能なスパーシフィケーション手法である。
論文 参考訳(メタデータ) (2019-10-08T03:57:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。