論文の概要: GFN: A graph feedforward network for resolution-invariant reduced operator learning in multifidelity applications
- arxiv url: http://arxiv.org/abs/2406.03569v1
- Date: Wed, 5 Jun 2024 18:31:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 19:14:47.872960
- Title: GFN: A graph feedforward network for resolution-invariant reduced operator learning in multifidelity applications
- Title(参考訳): GFN:多元性応用における分解能不変化演算子学習のためのグラフフィードフォワードネットワーク
- Authors: Oisín M. Morrison, Federico Pichi, Jan S. Hesthaven,
- Abstract要約: 本研究は,多忠実度アプリケーションのための新しい分解能不変モデルオーダー削減戦略を提案する。
我々はこの研究で開発された新しいニューラルネットワーク層、グラフフィードフォワードネットワークに基づいてアーキテクチャを構築した。
パラメトリックな偏微分方程式に対する自己エンコーダに基づく還元戦略において,異なるメッシュサイズでのトレーニングとテストの能力を利用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents a novel resolution-invariant model order reduction strategy for multifidelity applications. We base our architecture on a novel neural network layer developed in this work, the graph feedforward network, which extends the concept of feedforward networks to graph-structured data by creating a direct link between the weights of a neural network and the nodes of a mesh, enhancing the interpretability of the network. We exploit the method's capability of training and testing on different mesh sizes in an autoencoder-based reduction strategy for parametrised partial differential equations. We show that this extension comes with provable guarantees on the performance via error bounds. The capabilities of the proposed methodology are tested on three challenging benchmarks, including advection-dominated phenomena and problems with a high-dimensional parameter space. The method results in a more lightweight and highly flexible strategy when compared to state-of-the-art models, while showing excellent generalisation performance in both single fidelity and multifidelity scenarios.
- Abstract(参考訳): 本研究は,多忠実度アプリケーションのための新しい分解能不変モデルオーダー削減戦略を提案する。
この研究で開発された新しいニューラルネットワーク層であるグラフフィードフォワードネットワークは、ニューラルネットワークの重みとメッシュのノードとを直接リンクすることで、フィードフォワードネットワークの概念をグラフ構造化データに拡張し、ネットワークの解釈可能性を高める。
パラメトリックな偏微分方程式に対する自己エンコーダに基づく還元戦略において,異なるメッシュサイズでのトレーニングとテストの能力を利用する。
この拡張は、エラーバウンダリによるパフォーマンス保証が保証されていることを示している。
提案手法の能力は, 対流支配現象や高次元パラメータ空間の問題を含む3つの挑戦的ベンチマークで検証される。
この手法は, 最先端モデルと比較して軽量で柔軟な手法であり, 単一忠実度と多忠実度の両方のシナリオにおいて優れた一般化性能を示す。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
モバイルネットワークの規模は、手作業による介入や手作業による戦略を使ってアンテナパラメータの最適化を困難にしている。
本研究では,モバイルネットワーク構成をグローバルに最適化するマルチエージェント強化学習アルゴリズムを提案する。
シミュレーション環境におけるアンテナ傾き調整問題とジョイント傾き・電力制御問題に対するアルゴリズムの性能を実証的に示す。
論文 参考訳(メタデータ) (2023-01-20T17:06:34Z) - Graph-based Algorithm Unfolding for Energy-aware Power Allocation in
Wireless Networks [27.600081147252155]
我々は,無線通信網におけるエネルギー効率を最大化する新しいグラフ要約フレームワークを開発した。
無線ネットワークデータのモデルに望ましい特性である置換訓練について述べる。
結果は、異なるネットワークトポロジにまたがる一般化可能性を示している。
論文 参考訳(メタデータ) (2022-01-27T20:23:24Z) - SIRe-Networks: Skip Connections over Interlaced Multi-Task Learning and
Residual Connections for Structure Preserving Object Classification [28.02302915971059]
本稿では、オブジェクト分類タスクにおける消失勾配を低減するために、SIReを定義したインターレース型マルチタスク学習戦略を提案する。
提案手法は、自動エンコーダを介して入力画像構造を保存することにより、畳み込みニューラルネットワーク(CNN)を直接改善する。
提案手法を検証するため、SIRe戦略を介して単純なCNNと有名なネットワークの様々な実装を拡張し、CIFAR100データセットで広範囲にテストする。
論文 参考訳(メタデータ) (2021-10-06T13:54:49Z) - Rate Distortion Characteristic Modeling for Neural Image Compression [59.25700168404325]
エンドツーエンドの最適化機能は、ニューラルイメージ圧縮(NIC)の優れた損失圧縮性能を提供する。
異なるモデルは、R-D空間の異なる点に到達するために訓練される必要がある。
深層ネットワークと統計モデルを用いてNICのR-D挙動を記述するために,本質的な数学的関数の定式化に努めている。
論文 参考訳(メタデータ) (2021-06-24T12:23:05Z) - RAN-GNNs: breaking the capacity limits of graph neural networks [43.66682619000099]
グラフニューラルネットワークは、グラフ上で定義されたデータの学習と分析に対処する問題の中心となっている。
最近の研究では、複数の近隣サイズを同時に考慮し、適応的にそれらを調整する必要があるためです。
ランダムに配線されたアーキテクチャを用いることで、ネットワークの容量を増大させ、よりリッチな表現を得ることができることを示す。
論文 参考訳(メタデータ) (2021-03-29T12:34:36Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Attentional Local Contrast Networks for Infrared Small Target Detection [15.882749652217653]
赤外線小目標検出のための新しいモデル駆動深層ネットワークを提案する。
従来の局所コントラスト測定法を、エンドツーエンドネットワークにおける深さ自在なパラメータレス非線形特徴精製層としてモジュール化します。
ネットワークアーキテクチャの各コンポーネントの有効性と効率を実証的に検証するために,ネットワーク奥行きの異なる詳細なアブレーション研究を行う。
論文 参考訳(メタデータ) (2020-12-15T19:33:09Z) - Ensembles of Spiking Neural Networks [0.3007949058551534]
本稿では,最先端の結果を生み出すスパイクニューラルネットワークのアンサンブルを構築する方法について述べる。
MNIST, NMNIST, DVS Gestureデータセットの分類精度は98.71%, 100.0%, 99.09%である。
我々は、スパイキングニューラルネットワークをGLM予測器として形式化し、ターゲットドメインに適した表現を識別する。
論文 参考訳(メタデータ) (2020-10-15T17:45:18Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
サンプルサブネットワークの性能に適合するグラフ畳み込みネットワークを訓練する。
この戦略により、選択された候補集合において、より高いランク相関係数が得られる。
論文 参考訳(メタデータ) (2020-04-17T19:12:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。