Mediated Semi-Quantum Key Distribution with Improved Efficiency
- URL: http://arxiv.org/abs/2111.01627v2
- Date: Tue, 24 May 2022 15:57:50 GMT
- Title: Mediated Semi-Quantum Key Distribution with Improved Efficiency
- Authors: Julia Guskind and Walter O. Krawec
- Abstract summary: We introduce a new mediated semi-quantum key distribution protocol.
Our protocol is backwards compatible with prior work.
To prove security, we show an interesting reduction from the mediated semi-quantum scenario to a fully-quantum entanglement based protocol.
- Score: 1.827510863075184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mediated semi-quantum key distribution involves the use of two end-users who
have very restricted, almost classical, capabilities, who wish to establish a
shared secret key using the help of a fully-quantum server who may be
adversarial. In this paper, we introduce a new mediated semi-quantum key
distribution protocol, extending prior work, which has asymptotically perfect
efficiency. Though this comes at the cost of decreased noise tolerance, our
protocol is backwards compatible with prior work, so users may easily switch to
the old (normally less efficient) protocol if the noise level is high enough to
justify it. To prove security, we show an interesting reduction from the
mediated semi-quantum scenario to a fully-quantum entanglement based protocol
which may be useful when proving the security of other multi-user QKD
protocols.
Related papers
- Efficient Mediated Semi-Quantum Key Distribution Protocol Using Single Qubits [0.0]
We propose a new efficient mediated semi-quantum key distribution protocol (MSQKD)
Our approach significantly reduces the quantum requirements for TP, who only needs to prepare and measure qubits in the $X$ basis.
We demonstrate the security of our protocol against various well-known attacks.
arXiv Detail & Related papers (2024-04-26T23:22:44Z) - Experimental anonymous quantum conferencing [72.27323884094953]
We experimentally implement the AQCKA task in a six-user quantum network using Greenberger-Horne-Zeilinger (GHZ)-state entanglement.
We also demonstrate that the protocol retains an advantage in a four-user scenario with finite key effects taken into account.
arXiv Detail & Related papers (2023-11-23T19:00:01Z) - Efficient Device-Independent Quantum Key Distribution [4.817429789586127]
Device-independent quantum key distribution (DIQKD) is a key distribution scheme whose security is based on the laws of quantum physics.
We propose an efficient device-independent quantum key distribution protocol in which one participant prepares states and transmits them to another participant.
arXiv Detail & Related papers (2023-11-16T13:01:34Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Scalable Mediated Semi-quantum Key Distribution [5.548873288570182]
Mediated semi-quantum key distribution (M-SQKD) permits two limited "semi-quantum" or "classical" users to establish a secret key with the help of a third party (TP)
Several protocols have been studied recently for two-party scenarios, but no one has considered M-SQKD for multi-party scenarios.
arXiv Detail & Related papers (2022-05-13T09:21:12Z) - Improved Semi-Quantum Key Distribution with Two Almost-Classical Users [1.827510863075184]
We revisit a mediated semi-quantum key distribution protocol introduced by Massa et al.
We show how this protocol may be extended to improve its efficiency and also its noise tolerance.
We evaluate the protocol's performance in a variety of lossy and noisy channels.
arXiv Detail & Related papers (2022-03-20T14:41:14Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Qutrit-based semi-quantum key distribution protocol [0.0]
This article provides the unconditional security of a semi quantum key distribution protocol based on 3-dimensional states.
We find that this protocol has improved secret key rate with much more tolerance for noise compared to the previous 2-dimensional SQKD protocol.
arXiv Detail & Related papers (2021-01-07T15:16:29Z) - Entanglement-assisted entanglement purification [62.997667081978825]
We present a new class of entanglement-assisted entanglement purification protocols that can generate high-fidelity entanglement from noisy, finite-size ensembles.
Our protocols can deal with arbitrary errors, but are best suited for few errors, and work particularly well for decay noise.
arXiv Detail & Related papers (2020-11-13T19:00:05Z) - Experimental quantum conference key agreement [55.41644538483948]
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale.
Here we demonstrate quantum conference key agreement, a quantum communication protocol that exploits multi-partite entanglement.
We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states generated by high-brightness, telecom photon-pair sources across up to 50 km of fibre.
arXiv Detail & Related papers (2020-02-04T19:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.