論文の概要: Designing Inherently Interpretable Machine Learning Models
- arxiv url: http://arxiv.org/abs/2111.01743v1
- Date: Tue, 2 Nov 2021 17:06:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-03 14:21:52.124977
- Title: Designing Inherently Interpretable Machine Learning Models
- Title(参考訳): 独立に解釈可能な機械学習モデルの設計
- Authors: Agus Sudjianto and Aijun Zhang
- Abstract要約: 本質的には、MLモデルは透明性と説明可能性のために採用されるべきである。
モデルに依存しない説明性を持つブラックボックスモデルは、規制の精査の下ではより防御が難しい。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interpretable machine learning (IML) becomes increasingly important in highly
regulated industry sectors related to the health and safety or fundamental
rights of human beings. In general, the inherently IML models should be adopted
because of their transparency and explainability, while black-box models with
model-agnostic explainability can be more difficult to defend under regulatory
scrutiny. For assessing inherent interpretability of a machine learning model,
we propose a qualitative template based on feature effects and model
architecture constraints. It provides the design principles for
high-performance IML model development, with examples given by reviewing our
recent works on ExNN, GAMI-Net, SIMTree, and the Aletheia toolkit for local
linear interpretability of deep ReLU networks. We further demonstrate how to
design an interpretable ReLU DNN model with evaluation of conceptual soundness
for a real case study of predicting credit default in home lending. We hope
that this work will provide a practical guide of developing inherently IML
models in high risk applications in banking industry, as well as other sectors.
- Abstract(参考訳): インタプリタブル・機械学習(iml)は、健康と安全に関する高度に規制された産業分野や人間の基本的権利においてますます重要になっている。
一般に、本質的にimlモデルは透明性と説明可能性のために採用されるべきであるが、モデルに依存しないブラックボックスモデルは規制の精査の下では防御がより困難である。
機械学習モデル固有の解釈可能性を評価するために,特徴効果とモデルアーキテクチャ制約に基づく定性テンプレートを提案する。
exnn, gami-net, simtree, aletheia toolkit for local linear interpretability of deep relu networksの最近の研究をレビューした例とともに, 高性能imlモデル開発のための設計原則を提供する。
さらに,住宅貸付における信用不履行の予測を実例で検討し,概念的健全性を評価することで,解釈可能なrelu dnnモデルの設計方法を示す。
本研究は、銀行業界や他のセクターにおいて、リスクの高いアプリケーションに固有のMLモデルを開発するための実践的なガイドを提供することを期待している。
関連論文リスト
- Large Language Model-Based Interpretable Machine Learning Control in Building Energy Systems [3.0309252269809264]
本稿では、モデルとその推論の透明性と理解を高める機械学習(ML)の分野である、解釈可能な機械学習(IML)について検討する。
共有価値の原則とLarge Language Models(LLMs)のコンテキスト内学習機能を組み合わせた革新的なフレームワークを開発する。
本稿では,仮想テストベッドにおける需要応答イベント下での予測制御に基づく事前冷却モデルの実現可能性を示すケーススタディを提案する。
論文 参考訳(メタデータ) (2024-02-14T21:19:33Z) - Stable and Interpretable Deep Learning for Tabular Data: Introducing
InterpreTabNet with the Novel InterpreStability Metric [4.362293468843233]
分類精度と解釈可能性の両方を向上するモデルであるInterpreTabNetを導入する。
また,モデルの解釈可能性の安定性を定量的に評価する新しい評価指標であるInterpreStabilityを提案する。
論文 参考訳(メタデータ) (2023-10-04T15:04:13Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z) - Minimal Value-Equivalent Partial Models for Scalable and Robust Planning
in Lifelong Reinforcement Learning [56.50123642237106]
モデルに基づく強化学習における一般的な実践は、エージェントの環境のあらゆる側面をモデル化するモデルを学ぶことである。
このようなモデルは、生涯にわたる強化学習シナリオにおいて、スケーラブルで堅牢な計画を実行するのに特に適していない、と我々は主張する。
我々は,「最小値部分モデル」と呼ぶ,環境の関連する側面のみをモデル化する新しい種類のモデルを提案する。
論文 参考訳(メタデータ) (2023-01-24T16:40:01Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - Scientific Inference With Interpretable Machine Learning: Analyzing Models to Learn About Real-World Phenomena [4.312340306206884]
解釈可能な機械学習は、モデルを論理的に分析して解釈を導出することで解を提供する。
現在のIML研究は、科学的推論にMLモデルを活用するのではなく、MLモデルの監査に重点を置いている。
本稿では、モデルだけでなく、その表現する現象を照らし出すIMLメソッドを定式化した「プロパティ記述子」を設計するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-11T10:13:21Z) - GAM(e) changer or not? An evaluation of interpretable machine learning
models based on additive model constraints [5.783415024516947]
本稿では,一連の固有解釈可能な機械学習モデルについて検討する。
5つのGAMの予測特性を従来のMLモデルと比較した。
論文 参考訳(メタデータ) (2022-04-19T20:37:31Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - Analyzing a Caching Model [7.378507865227209]
解釈容易性は、現実世界のデプロイメントにおいて、依然として大きな障害である。
現状のキャッシュモデルを分析することで、単純な統計以上の概念を学習したことを示す。
論文 参考訳(メタデータ) (2021-12-13T19:53:07Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
本稿では,深層学習に基づく知識追跡(DLKT)モデルの解釈可能性問題に対処するポストホック手法を提案する。
具体的には、RNNに基づくDLKTモデルを解釈するために、レイヤワイズ関連伝搬法(LRP)を適用することに焦点をあてる。
実験結果から,DLKTモデルの予測をLRP法で解釈できることを示す。
論文 参考訳(メタデータ) (2020-05-13T04:03:21Z) - Explainable Matrix -- Visualization for Global and Local
Interpretability of Random Forest Classification Ensembles [78.6363825307044]
本研究では,ランダムフォレスト (RF) 解釈のための新しい可視化手法である Explainable Matrix (ExMatrix) を提案する。
単純なマトリックスのようなメタファで、行はルール、列は特徴、セルはルールを述語する。
ExMatrixの適用性は、異なる例を通じて確認され、RFモデルの解釈可能性を促進するために実際にどのように使用できるかを示している。
論文 参考訳(メタデータ) (2020-05-08T21:03:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。