Quantum information for a solitonic particle with hyperbolic interaction
- URL: http://arxiv.org/abs/2111.01941v1
- Date: Tue, 2 Nov 2021 23:16:52 GMT
- Title: Quantum information for a solitonic particle with hyperbolic interaction
- Authors: A. R. P. Moreira
- Abstract summary: We analyze a particle with position-dependent mass, with solitonic mass distribution in a stationary quantum system.
We find the analytical solutions of the Schr"odinger equation and their respective quantized energies.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In this work, we analyze a particle with position-dependent mass, with
solitonic mass distribution in a stationary quantum system, for the particular
case of the BenDaniel-Duke ordering, in a hyperbolic barrier potential. The
kinetic energy ordering of BenDaniel-Duke guarantees the hermiticity of the
Hamiltonian operator. We find the analytical solutions of the Schr\"odinger
equation and their respective quantized energies. In addition, we calculate the
Shannon entropy and Fisher information for the solutions in the case of the
lowest energy states of the system.
Related papers
- Time-Dependent Dunkl-Schrödinger Equation with an Angular-Dependent Potential [0.0]
The Schr"odinger equation is a fundamental equation in quantum mechanics.
Over the past decade, theoretical studies have focused on adapting the Dunkl derivative to quantum mechanical problems.
arXiv Detail & Related papers (2024-08-04T13:11:52Z) - Energy eigenstates of position-dependent mass particles in a spherical
quantum dot [0.0]
We obtain the exact energy spectrum of nonuniform mass particles for a collection of Hamiltonians in a three-dimensional approach to a quantum dot.
The present results are of interest to atomic physics and quantum dot theory.
arXiv Detail & Related papers (2023-11-23T21:34:43Z) - Energetics of the dissipative quantum oscillator [22.76327908349951]
We discuss some aspects of the energetics of a quantum Brownian particle placed in a harmonic trap.
Based on the fluctuation-dissipation theorem, we analyze two distinct notions of thermally-averaged energy.
We generalize our analysis to the case of the three-dimensional dissipative magneto-oscillator.
arXiv Detail & Related papers (2023-10-05T15:18:56Z) - Open Quantum Systems with Kadanoff-Baym Equations [0.0]
We study quantum mechanical fermionic particles exhibiting one bound state within a one-dimensional attractive square-well potential in a heat bath of bosonic particles.
For this open quantum system we formulate the non-equilibrium Kadanoff-Baym equations for the system particles.
The corresponding spatially imhomogeneous integro-differential equations for the one-particle Greens's function are solved numerically.
arXiv Detail & Related papers (2023-08-15T09:19:21Z) - Quantum information entropies for solitonic systems [0.0]
We study a particle with the solitonic mass distribution in two different forms of potential: the quartic and the symmetric potential.
We have observed that the Shannon entropy is greater for the solitonic mass distribution when it is subjected to a quartic potential.
arXiv Detail & Related papers (2023-08-14T10:15:30Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Quantum information entropies for a soliton at hyperbolic well [0.0]
Shannon's entropy and Fisher's information of a position-dependent mass are calculated.
For the Hamiltonian operator to be Hermitian, we consider the stationary Schr"odinger equation ordered by Zhu-Kroemer.
arXiv Detail & Related papers (2021-10-21T15:05:40Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.