The Powerful Use of AI in the Energy Sector: Intelligent Forecasting
- URL: http://arxiv.org/abs/2111.02026v1
- Date: Wed, 3 Nov 2021 05:30:42 GMT
- Title: The Powerful Use of AI in the Energy Sector: Intelligent Forecasting
- Authors: Erik Blasch, Haoran Li, Zhihao Ma, Yang Weng
- Abstract summary: This paper proposes a methodology to develop, deploy, and evaluate AI systems in the energy sector.
The goal is to provide a high level of confidence to energy utility users.
- Score: 7.747343962518897
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence (AI) techniques continue to broaden across
governmental and public sectors, such as power and energy - which serve as
critical infrastructures for most societal operations. However, due to the
requirements of reliability, accountability, and explainability, it is risky to
directly apply AI-based methods to power systems because society cannot afford
cascading failures and large-scale blackouts, which easily cost billions of
dollars. To meet society requirements, this paper proposes a methodology to
develop, deploy, and evaluate AI systems in the energy sector by: (1)
understanding the power system measurements with physics, (2) designing AI
algorithms to forecast the need, (3) developing robust and accountable AI
methods, and (4) creating reliable measures to evaluate the performance of the
AI model. The goal is to provide a high level of confidence to energy utility
users. For illustration purposes, the paper uses power system event forecasting
(PEF) as an example, which carefully analyzes synchrophasor patterns measured
by the Phasor Measurement Units (PMUs). Such a physical understanding leads to
a data-driven framework that reduces the dimensionality with physics and
forecasts the event with high credibility. Specifically, for dimensionality
reduction, machine learning arranges physical information from different
dimensions, resulting inefficient information extraction. For event
forecasting, the supervised learning model fuses the results of different
models to increase the confidence. Finally, comprehensive experiments
demonstrate the high accuracy, efficiency, and reliability as compared to other
state-of-the-art machine learning methods.
Related papers
- Present and Future of AI in Renewable Energy Domain : A Comprehensive Survey [0.0]
Artificial intelligence (AI) has become a crucial instrument for streamlining processes in various industries.
Nine AI-based strategies are identified here to assist Renewable Energy (RE) in contemporary power systems.
This study also addressed three main topics: using AI technology for renewable power generation, utilizing AI for renewable energy forecasting, and optimizing energy systems.
arXiv Detail & Related papers (2024-06-22T04:36:09Z) - Computing Power and the Governance of Artificial Intelligence [51.967584623262674]
Governments and companies have started to leverage compute as a means to govern AI.
compute-based policies and technologies have the potential to assist in these areas, but there is significant variation in their readiness for implementation.
naive or poorly scoped approaches to compute governance carry significant risks in areas like privacy, economic impacts, and centralization of power.
arXiv Detail & Related papers (2024-02-13T21:10:21Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
We present an AI-based data assimilation model, i.e., Adas, for global weather variables.
We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term.
We are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential.
arXiv Detail & Related papers (2023-12-18T09:05:28Z) - Energy-frugal and Interpretable AI Hardware Design using Learning
Automata [5.514795777097036]
A new machine learning algorithm, called the Tsetlin machine, has been proposed.
In this paper, we investigate methods of energy-frugal artificial intelligence hardware design.
We show that frugal resource allocation can provide decisive energy reduction while also achieving robust and interpretable learning.
arXiv Detail & Related papers (2023-05-19T15:11:18Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - Vision Paper: Causal Inference for Interpretable and Robust Machine
Learning in Mobility Analysis [71.2468615993246]
Building intelligent transportation systems requires an intricate combination of artificial intelligence and mobility analysis.
The past few years have seen rapid development in transportation applications using advanced deep neural networks.
This vision paper emphasizes research challenges in deep learning-based mobility analysis that require interpretability and robustness.
arXiv Detail & Related papers (2022-10-18T17:28:58Z) - AI Assurance using Causal Inference: Application to Public Policy [0.0]
Most AI approaches can only be represented as "black boxes" and suffer from the lack of transparency.
It is crucial not only to develop effective and robust AI systems, but to make sure their internal processes are explainable and fair.
arXiv Detail & Related papers (2021-12-01T16:03:06Z) - Statistical Perspectives on Reliability of Artificial Intelligence
Systems [6.284088451820049]
We provide statistical perspectives on the reliability of AI systems.
We introduce a so-called SMART statistical framework for AI reliability research.
We discuss recent developments in modeling and analysis of AI reliability.
arXiv Detail & Related papers (2021-11-09T20:00:14Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
Recent advancements in predictive machine learning has led to its application in various use cases in manufacturing.
Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it.
In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty.
arXiv Detail & Related papers (2021-07-28T10:28:05Z) - Trustworthy AI [75.99046162669997]
Brittleness to minor adversarial changes in the input data, ability to explain the decisions, address the bias in their training data, are some of the most prominent limitations.
We propose the tutorial on Trustworthy AI to address six critical issues in enhancing user and public trust in AI systems.
arXiv Detail & Related papers (2020-11-02T20:04:18Z) - AAAI FSS-19: Human-Centered AI: Trustworthiness of AI Models and Data
Proceedings [8.445274192818825]
It is crucial for predictive models to be uncertainty-aware and yield trustworthy predictions.
The focus of this symposium was on AI systems to improve data quality and technical robustness and safety.
submissions from broadly defined areas also discussed approaches addressing requirements such as explainable models, human trust and ethical aspects of AI.
arXiv Detail & Related papers (2020-01-15T15:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.