Exploiting sparse structures and synergy designs to advance situational awareness of electrical power grid
- URL: http://arxiv.org/abs/2412.15105v1
- Date: Thu, 19 Dec 2024 17:51:43 GMT
- Title: Exploiting sparse structures and synergy designs to advance situational awareness of electrical power grid
- Authors: Shimiao Li,
- Abstract summary: This thesis addresses robustness and efficiency gaps through a dual-fold contribution.
We first address the inherent limitations in the existing physics-based and data-driven worlds.
We then transcend the boundaries of conventional algorithmic design in the direction of a new paradigm -- Physics-ML Synergy.
- Score: 0.4759142872591625
- License:
- Abstract: The growing threats of uncertainties, anomalies, and cyberattacks on power grids are driving a critical need to advance situational awareness which allows system operators to form a complete and accurate picture of the present and future state. Simulation and estimation are foundational tools in this process. However, existing tools lack the robustness and efficiency required to achieve the level of situational awareness needed for the ever-evolving threat landscape. Industry-standard (steady-state) simulators are not robust to blackouts, often leading to non-converging or non-actionable results. Estimation tools lack robustness to anomalous data, returning erroneous system states. Efficiency is the other major concern as nonlinearities and scalability issues make large systems slow to converge. This thesis addresses robustness and efficiency gaps through a dual-fold contribution. We first address the inherent limitations in the existing physics-based and data-driven worlds; and then transcend the boundaries of conventional algorithmic design in the direction of a new paradigm -- Physics-ML Synergy -- which integrates the strengths of the two worlds. Our approaches are built on circuit formulation which provides a unified framework that applies to both transmission and distribution. Sparse optimization acts as the key enabler to make these tools intrinsically robust and immune to random threats, pinpointing dominant sources of (random) blackouts and data errors. Further, we explore sparsity-exploiting optimizations to develop lightweight ML models whose prediction and detection capabilities are a complement to physics-based tools; and whose lightweight designs advance generalization and scalability. Finally, Physics-ML Synergy brings robustness and efficiency further against targeted cyberthreats, by interconnecting our physics-based tools with lightweight ML.
Related papers
- Towards Robust Stability Prediction in Smart Grids: GAN-based Approach under Data Constraints and Adversarial Challenges [53.2306792009435]
We introduce a novel framework to detect instability in smart grids by employing only stable data.
It relies on a Generative Adversarial Network (GAN) where the generator is trained to create instability data that are used along with stable data to train the discriminator.
Our solution, tested on a dataset composed of real-world stable and unstable samples, achieve accuracy up to 97.5% in predicting grid stability and up to 98.9% in detecting adversarial attacks.
arXiv Detail & Related papers (2025-01-27T20:48:25Z) - SPADE: Enhancing Adaptive Cyber Deception Strategies with Generative AI and Structured Prompt Engineering [0.17999333451993949]
This study leverages Generative AI (GenAI) models to automate the creation of adaptive cyber deception ploys.
We introduce a systematic framework (SPADE) to address inherent challenges large language models pose to adaptive deceptions.
arXiv Detail & Related papers (2025-01-01T19:44:30Z) - Optical aberrations in autonomous driving: Physics-informed parameterized temperature scaling for neural network uncertainty calibration [49.03824084306578]
We propose to incorporate a physical inductive bias into the neural network calibration architecture to enhance the robustness and the trustworthiness of the AI target application.
We pave the way for a trustworthy uncertainty representation and for a holistic verification strategy of the perception chain.
arXiv Detail & Related papers (2024-12-18T10:36:46Z) - DETECTA 2.0: Research into non-intrusive methodologies supported by Industry 4.0 enabling technologies for predictive and cyber-secure maintenance in SMEs [0.19972837513980318]
The DETECTA 2.0 project harmonizes real-time anomaly detection, sophisticated analytics, and predictive forecasting capabilities.
At the core lies a Digital Twin interface, providing intuitive real-time visualizations of machine states and detected anomalies.
The predictive engine uses advanced time series algorithms like N-HiTS to forecast future machine utilization trends.
arXiv Detail & Related papers (2024-05-24T08:38:38Z) - GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
We propose GAN-GRID a novel adversarial attack targeting the stability prediction system of a smart grid tailored to real-world constraints.
Our findings reveal that an adversary armed solely with the stability model's output, devoid of data or model knowledge, can craft data classified as stable with an Attack Success Rate (ASR) of 0.99.
arXiv Detail & Related papers (2024-05-20T14:43:46Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - Energy-frugal and Interpretable AI Hardware Design using Learning
Automata [5.514795777097036]
A new machine learning algorithm, called the Tsetlin machine, has been proposed.
In this paper, we investigate methods of energy-frugal artificial intelligence hardware design.
We show that frugal resource allocation can provide decisive energy reduction while also achieving robust and interpretable learning.
arXiv Detail & Related papers (2023-05-19T15:11:18Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - Robust, Deep, and Reinforcement Learning for Management of Communication
and Power Networks [6.09170287691728]
The present thesis first develops principled methods to make generic machine learning models robust against distributional uncertainties and adversarial data.
We then build on this robust framework to design robust semi-supervised learning over graph methods.
The second part of this thesis aspires to fully unleash the potential of next-generation wired and wireless networks.
arXiv Detail & Related papers (2022-02-08T05:49:06Z) - The Powerful Use of AI in the Energy Sector: Intelligent Forecasting [7.747343962518897]
This paper proposes a methodology to develop, deploy, and evaluate AI systems in the energy sector.
The goal is to provide a high level of confidence to energy utility users.
arXiv Detail & Related papers (2021-11-03T05:30:42Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.