論文の概要: Power Flow Balancing with Decentralized Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2111.02169v1
- Date: Wed, 3 Nov 2021 12:14:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-04 14:27:48.123676
- Title: Power Flow Balancing with Decentralized Graph Neural Networks
- Title(参考訳): 分散グラフニューラルネットワークを用いたパワーフローバランシング
- Authors: Jonas Berg Hansen, Stian Normann Anfinsen, Filippo Maria Bianchi
- Abstract要約: 汎用グリッド内の電力フローのバランスをとるために,グラフニューラルネットワーク(GNN)に基づくエンドツーエンドフレームワークを提案する。
提案するフレームワークは,ディープラーニングに基づく他の解法と比較して効率的であり,グリッドコンポーネントの物理量だけでなくトポロジにも頑健である。
- 参考スコア(独自算出の注目度): 4.812718493682454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an end-to-end framework based on a Graph Neural Network (GNN) to
balance the power flows in a generic grid. The optimization is framed as a
supervised vertex regression task, where the GNN is trained to predict the
current and power injections at each grid branch that yield a power flow
balance. By representing the power grid as a line graph with branches as
vertices, we can train a GNN that is more accurate and robust to changes in the
underlying topology. In addition, by using specialized GNN layers, we are able
to build a very deep architecture that accounts for large neighborhoods on the
graph, while implementing only localized operations. We perform three different
experiments to evaluate: i) the benefits of using localized rather than global
operations and the tendency to oversmooth when using deep GNN models; ii) the
resilience to perturbations in the graph topology; and iii) the capability to
train the model simultaneously on multiple grid topologies and the
consequential improvement in generalization to new, unseen grids. The proposed
framework is efficient and, compared to other solvers based on deep learning,
is robust to perturbations not only to the physical quantities on the grid
components, but also to the topology.
- Abstract(参考訳): 汎用グリッド内の電力フローのバランスをとるために,グラフニューラルネットワーク(GNN)に基づくエンドツーエンドフレームワークを提案する。
最適化は、制御された頂点回帰タスクとして構成され、GNNは、電力フローバランスをもたらす各グリッドブランチにおける電流および電力注入を予測するために訓練される。
電力グリッドを分岐を頂点とした線グラフとして表現することにより、基底トポロジの変化に対してより正確で堅牢なGNNを訓練することができる。
さらに、特殊なGNNレイヤを使用することで、グラフ上の大きな近傍を考慮に入れながら、ローカライズされた操作のみを実装しながら、非常に深いアーキテクチャを構築することができる。
評価するために3つの異なる実験を行います
一 グローバルオペレーションではなくローカライズドを使用することの利点及び深層gnnモデルの使用時に過度に動揺する傾向
二 グラフトポロジーにおける摂動に対する弾力性
三 複数のグリッドトポロジ上でモデルを同時に訓練する能力及び新しい目に見えないグリッドへの一般化の連続的な改善
提案するフレームワークは,ディープラーニングに基づく他の解法と比較して効率的であり,グリッドコンポーネントの物理量だけでなくトポロジにも頑健である。
関連論文リスト
- PowerGraph: A power grid benchmark dataset for graph neural networks [7.504044714471332]
本稿では、電力フロー、最適電力フロー、カスケード故障解析のためのGNN調整データセットを含むPowerGraphを提案する。
PowerGraphは、さまざまなタスクのための多面的なGNNデータセットで、実世界の説明を含む電力フローと障害シナリオを含んでいる。
論文 参考訳(メタデータ) (2024-02-05T09:24:52Z) - Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
グラフニューラルネットワーク(GNN)アーキテクチャを変更して,各グループのノードに対して,重み行列を個別に学習する。
このシンプルな実装変更により、データセットとGNNメソッドのパフォーマンスが改善されているようだ。
論文 参考訳(メタデータ) (2023-12-16T14:09:23Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAEはグラフオートエンコーダフレームワークで、GNNの転送性と安定性を活用して、再トレーニングなしに効率的なネットワークアライメントを実現する。
実験の結果、T-GAEは最先端の最適化手法と最高のGNN手法を最大38.7%、50.8%で上回っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - Re-Think and Re-Design Graph Neural Networks in Spaces of Continuous
Graph Diffusion Functionals [7.6435511285856865]
グラフニューラルネットワーク(GNN)は、ソーシャルネットワークや生体システムのようなドメインで広く使われている。
GNNのローカリティ仮定は、グラフ内の長距離依存関係とグローバルパターンをキャプチャする能力を損なう。
本稿では,ブラヒクロニスト問題から着想を得た変分解析に基づく新しい帰納バイアスを提案する。
論文 参考訳(メタデータ) (2023-07-01T04:44:43Z) - Fast and Effective GNN Training with Linearized Random Spanning Trees [20.73637495151938]
ノード分類タスクにおいて,GNNをトレーニングするための,より効果的でスケーラブルなフレームワークを提案する。
提案手法は, ランダムに分布する木々の広範囲に分布するGNN重みを徐々に改善する。
これらの経路グラフのスパース性は、GNN訓練の計算負担を大幅に軽減する。
論文 参考訳(メタデータ) (2023-06-07T23:12:42Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
埋め込みによるグラフリファインメントクラスタリングネットワーク (EGRC-Net) という新しいグラフクラスタリングネットワークを提案する。
EGRC-Netは学習した埋め込みを利用して初期グラフを適応的に洗練し、クラスタリング性能を向上させる。
提案手法はいくつかの最先端手法より一貫して優れている。
論文 参考訳(メタデータ) (2022-11-19T09:08:43Z) - Leveraging power grid topology in machine learning assisted optimal
power flow [0.5076419064097734]
機械学習支援最適電力フロー(OPF)は、非線形および非制約電力フロー問題の計算複雑性を低減することを目的としている。
我々は,機械支援OPFの2つの基本的アプローチに対して,さまざまなFCNN,CNN,GNNモデルの性能を評価する。
相互接続されたユーティリティを持ついくつかの合成格子に対して,特徴変数と対象変数の間の局所性特性は乏しいことを示す。
論文 参考訳(メタデータ) (2021-10-01T10:39:53Z) - Fast Power Control Adaptation via Meta-Learning for Random Edge Graph
Neural Networks [39.59987601426039]
本稿では,時間変動トポロジに対する電力制御政策の迅速な適応を可能にする高レベル問題について検討する。
我々は,新しいネットワーク構成への数ショット適応を最適化するために,複数のトポロジのデータに一階のメタラーニングを適用した。
論文 参考訳(メタデータ) (2021-05-02T12:43:10Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Graph Neural Networks: Architectures, Stability and Transferability [176.3960927323358]
グラフニューラルネットワーク(GNN)は、グラフでサポートされている信号のための情報処理アーキテクチャである。
これらは、個々の層がグラフ畳み込みフィルタのバンクを含む畳み込みニューラルネットワーク(CNN)の一般化である。
論文 参考訳(メタデータ) (2020-08-04T18:57:36Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。