論文の概要: Deep Least Squares Alignment for Unsupervised Domain Adaptation
- arxiv url: http://arxiv.org/abs/2111.02207v1
- Date: Wed, 3 Nov 2021 13:23:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-04 16:54:17.765494
- Title: Deep Least Squares Alignment for Unsupervised Domain Adaptation
- Title(参考訳): 教師なし領域適応のための奥行き角アライメント
- Authors: Youshan Zhang and Brian D. Davison
- Abstract要約: 教師なしのドメイン適応はラベル付きソースドメインからの豊富な情報を活用してラベルなしのターゲットドメインをモデル化する。
線形モデルをパラメータ化することにより,2つの領域の潜在空間における分布を推定するために,最深部最小二乗アライメント(DLSA)を提案する。
拡張実験により,提案したDLSAモデルは領域分布の整合に有効であり,最先端の手法より優れていることが示された。
- 参考スコア(独自算出の注目度): 6.942003070153651
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Unsupervised domain adaptation leverages rich information from a labeled
source domain to model an unlabeled target domain. Existing methods attempt to
align the cross-domain distributions. However, the statistical representations
of the alignment of the two domains are not well addressed. In this paper, we
propose deep least squares alignment (DLSA) to estimate the distribution of the
two domains in a latent space by parameterizing a linear model. We further
develop marginal and conditional adaptation loss to reduce the domain
discrepancy by minimizing the angle between fitting lines and intercept
differences and further learning domain invariant features. Extensive
experiments demonstrate that the proposed DLSA model is effective in aligning
domain distributions and outperforms state-of-the-art methods.
- Abstract(参考訳): 教師なしのドメイン適応はラベル付きソースドメインからの豊富な情報を活用してラベルなしのターゲットドメインをモデル化する。
既存のメソッドは、クロスドメイン分布を調整しようとする。
しかし、2つの領域のアライメントの統計的表現はうまく対応されていない。
本稿では,線形モデルを用いて潜在空間における2つの領域の分布を推定する深部最小二乗アライメント(dlsa)を提案する。
さらに,適合線間の角度を最小化し,インターセプタ差を最小化し,さらに学習領域不変性を持たせることにより,領域不一致を低減し,限界適応損失と条件適応損失を更に発展させる。
拡張実験により,提案したDLSAモデルは領域分布の整合に有効であり,最先端の手法より優れていることが示された。
関連論文リスト
- Unsupervised Domain Adaptation Based on the Predictive Uncertainty of
Models [1.6498361958317636]
非教師付きドメイン適応(UDA)は、ソースドメインからの分散シフトの下で、ターゲットドメインの予測性能を改善することを目的としている。
ドメインの発散を最小限に抑えるドメイン不変の特徴を学習する新しいUDA法を提案する。
論文 参考訳(メタデータ) (2022-11-16T12:23:32Z) - Adversarial Bi-Regressor Network for Domain Adaptive Regression [52.5168835502987]
ドメインシフトを軽減するために、クロスドメインレグレッタを学ぶことが不可欠です。
本稿では、より効果的なドメイン間回帰モデルを求めるために、ABRNet(Adversarial Bi-Regressor Network)を提案する。
論文 参考訳(メタデータ) (2022-09-20T18:38:28Z) - Domain-Specific Risk Minimization for Out-of-Distribution Generalization [104.17683265084757]
まず、適応性ギャップを明示的に考慮した一般化境界を確立する。
本稿では,目標に対するより良い仮説の選択を導くための効果的なギャップ推定法を提案する。
もう1つの方法は、オンラインターゲットサンプルを用いてモデルパラメータを適応させることにより、ギャップを最小化することである。
論文 参考訳(メタデータ) (2022-08-18T06:42:49Z) - Making the Best of Both Worlds: A Domain-Oriented Transformer for
Unsupervised Domain Adaptation [31.150256154504696]
Unsupervised Domain Adaptation (UDA)は、限られた実験データセットから現実の制約のないドメインへのディープラーニングの展開を促進する。
ほとんどのUDAアプローチは、共通の埋め込み空間内の機能を整列させ、ターゲット予測に共有分類器を適用する。
本稿では,異なる領域に着目した2つの個別空間における特徴アライメントを同時に実施し,各領域に対してドメイン指向の分類器を作成することを提案する。
論文 参考訳(メタデータ) (2022-08-02T01:38:37Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - Discriminative Cross-Domain Feature Learning for Partial Domain
Adaptation [70.45936509510528]
部分的なドメイン適応は、より大きく多様なソースドメインからの知識を、より少ないクラス数でより小さなターゲットドメインに適応させることを目的としています。
ドメイン適応の最近の実践は、ターゲットドメインの擬似ラベルを組み込むことで、効果的な特徴を抽出する。
ターゲットデータを少数のソースデータのみにアライメントすることが不可欠である。
論文 参考訳(メタデータ) (2020-08-26T03:18:53Z) - Discrepancy Minimization in Domain Generalization with Generative
Nearest Neighbors [13.047289562445242]
ドメイン一般化(Domain Generalization, DG)は、複数のソースドメインでトレーニングされた機械学習モデルが、統計の異なるターゲットドメインでうまく一般化できないという、ドメインシフトの問題を扱う。
シフト対象領域の一般化を保証するのに失敗するソースドメイン全体にわたるドメイン不変表現を学習することにより、ドメイン一般化の問題を解決するために、複数のアプローチが提案されている。
本稿では,GNNDM(Generative Nearest Neighbor Based Discrepancy Minimization)法を提案する。
論文 参考訳(メタデータ) (2020-07-28T14:54:25Z) - Dual Distribution Alignment Network for Generalizable Person
Re-Identification [174.36157174951603]
ドメイン一般化(DG)は、人物再識別(Re-ID)を扱うための有望なソリューションとして機能する
本稿では、複数のソースドメインの分布を選択的に整列させることにより、この問題に対処するDual Distribution Alignment Network(DDAN)を提案する。
大規模なDomain Generalization Re-ID(DG Re-ID)ベンチマークでDDANを評価した。
論文 参考訳(メタデータ) (2020-07-27T00:08:07Z) - Dual Mixup Regularized Learning for Adversarial Domain Adaptation [19.393393465837377]
教師なしドメイン適応のための二重混合正規化学習(DMRL)法を提案する。
DMRLは、サンプル間の一貫した予測を強化するために分類器をガイドし、潜在空間の内在構造を豊かにする。
4つのドメイン適応ベンチマークに関する一連の実証研究は、我々のアプローチが最先端を実現することを実証している。
論文 参考訳(メタデータ) (2020-07-07T00:24:14Z) - Discriminative Feature Alignment: Improving Transferability of
Unsupervised Domain Adaptation by Gaussian-guided Latent Alignment [27.671964294233756]
本研究では,ラベル付きデータ領域から近似推論モデルを学習するための教師なし領域適応問題に着目した。
教師なしのドメイン適応の成功は、主にクロスドメイン機能アライメントに依存している。
本稿では,2つの領域の潜在特徴分布を事前分布の導出の下で整列するガウス誘導型潜時アライメント手法を提案する。
そのような間接的な方法では、2つの領域からのサンプル上の分布は共通の特徴空間、すなわち前の領域の空間上に構築される。
論文 参考訳(メタデータ) (2020-06-23T05:33:54Z) - Bi-Directional Generation for Unsupervised Domain Adaptation [61.73001005378002]
教師なしのドメイン適応は、確立されたソースドメイン情報に依存するラベルなしのターゲットドメインを促進する。
従来の手法では、潜在空間におけるドメインの不一致を強制的に低減することで、本質的なデータ構造が破壊される。
本稿では、2つの中間領域をブリッジソースとターゲットドメインに補間する一貫した分類器を用いた双方向生成ドメイン適応モデルを提案する。
論文 参考訳(メタデータ) (2020-02-12T09:45:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。