論文の概要: Implicit Deep Adaptive Design: Policy-Based Experimental Design without
Likelihoods
- arxiv url: http://arxiv.org/abs/2111.02329v1
- Date: Wed, 3 Nov 2021 16:24:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-04 12:48:54.378014
- Title: Implicit Deep Adaptive Design: Policy-Based Experimental Design without
Likelihoods
- Title(参考訳): 暗黙的な深層適応設計:好ましくない政策に基づく実験設計
- Authors: Desi R. Ivanova, Adam Foster, Steven Kleinegesse, Michael U. Gutmann
and Tom Rainforth
- Abstract要約: 暗黙のDeep Adaptive Design (iDAD) は暗黙のモデルでリアルタイムで適応実験を行う新しい手法である。
iDADは、設計ポリシーネットワークを事前学習することで、ベイズ最適設計(BOED)のコストを償却する。
- 参考スコア(独自算出の注目度): 24.50829695870901
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce implicit Deep Adaptive Design (iDAD), a new method for
performing adaptive experiments in real-time with implicit models. iDAD
amortizes the cost of Bayesian optimal experimental design (BOED) by learning a
design policy network upfront, which can then be deployed quickly at the time
of the experiment. The iDAD network can be trained on any model which simulates
differentiable samples, unlike previous design policy work that requires a
closed form likelihood and conditionally independent experiments. At
deployment, iDAD allows design decisions to be made in milliseconds, in
contrast to traditional BOED approaches that require heavy computation during
the experiment itself. We illustrate the applicability of iDAD on a number of
experiments, and show that it provides a fast and effective mechanism for
performing adaptive design with implicit models.
- Abstract(参考訳): 暗黙的深層適応設計(iDAD)は,暗黙的モデルを用いた適応実験をリアルタイムに行う新しい手法である。
idadは、事前の設計ポリシーネットワークを学習することでベイズ最適実験設計(boed)のコストを償却する。
iDADネットワークは、クローズドフォームの可能性と条件に依存しない実験を必要とする以前の設計方針とは異なり、微分可能なサンプルをシミュレートするあらゆるモデルで訓練することができる。
iDADは、実験中に重い計算を必要とする従来のBOEDアプローチとは対照的に、ミリ秒で設計決定を行うことができる。
いくつかの実験でiDADの適用性を説明し、暗黙のモデルで適応設計を行うための高速かつ効果的なメカニズムを提供することを示す。
関連論文リスト
- Dual Test-time Training for Out-of-distribution Recommender System [91.15209066874694]
DT3ORと呼ばれるOODレコメンデーションのための新しいDual Test-Time-Trainingフレームワークを提案する。
DT3ORでは、テスト期間中にモデル適応機構を導入し、リコメンデーションモデルを慎重に更新する。
我々の知る限りでは、テストタイムトレーニング戦略を通じてOODレコメンデーションに対処する最初の研究である。
論文 参考訳(メタデータ) (2024-07-22T13:27:51Z) - Diffusion Model for Data-Driven Black-Box Optimization [54.25693582870226]
我々は、強力な生成AI技術である拡散モデルに注目し、ブラックボックス最適化の可能性について検討する。
本研究では,1)実数値報酬関数のノイズ測定と,2)対比較に基づく人間の嗜好の2種類のラベルについて検討する。
提案手法は,設計最適化問題を条件付きサンプリング問題に再構成し,拡散モデルのパワーを有効活用する。
論文 参考訳(メタデータ) (2024-03-20T00:41:12Z) - Adaptive Instrument Design for Indirect Experiments [48.815194906471405]
RCTとは異なり、間接的な実験は条件付き機器変数を利用して治療効果を推定する。
本稿では,データ収集ポリシーを適応的に設計することで,間接実験におけるサンプル効率の向上に向けた最初のステップについて述べる。
我々の主な貢献は、影響関数を利用して最適なデータ収集ポリシーを探索する実用的な計算手順である。
論文 参考訳(メタデータ) (2023-12-05T02:38:04Z) - Task-specific experimental design for treatment effect estimation [59.879567967089145]
因果推論の標準は大規模ランダム化試験(RCT)である。
近年の研究では、RCTのよりサンプル効率の良い代替案が提案されているが、これらは因果効果を求める下流の応用には適用できない。
実験的な設計のためのタスク固有のアプローチを開発し、特定の下流アプリケーションにカスタマイズされたサンプリング戦略を導出する。
論文 参考訳(メタデータ) (2023-06-08T18:10:37Z) - Online simulator-based experimental design for cognitive model selection [74.76661199843284]
本稿では,抽出可能な確率を伴わない計算モデルを選択する実験設計手法BOSMOSを提案する。
シミュレーション実験では,提案手法により,既存のLFI手法に比べて最大2桁の精度でモデルを選択することができることを示した。
論文 参考訳(メタデータ) (2023-03-03T21:41:01Z) - CO-BED: Information-Theoretic Contextual Optimization via Bayesian
Experimental Design [31.247108087199095]
CO-BEDは、情報理論の原理を用いて文脈実験を設計するためのモデルに依存しないフレームワークである。
その結果、CO-BEDは、幅広い文脈最適化問題に対して、汎用的で自動化されたソリューションを提供する。
論文 参考訳(メタデータ) (2023-02-27T18:14:13Z) - Adaptive Experimental Design and Counterfactual Inference [20.666734673282495]
本稿では, 適応型実験システムを用いた産業環境におけるナレーションの課題と落とし穴について, 教訓を共有した。
我々は,これらの経験に基づいて,対実的推論のための適応型実験設計フレームワークを開発した。
論文 参考訳(メタデータ) (2022-10-25T22:29:16Z) - Design Amortization for Bayesian Optimal Experimental Design [70.13948372218849]
予測情報ゲイン(EIG)のバウンダリに関してパラメータ化された変分モデルを最適化する。
実験者が1つの変分モデルを最適化し、潜在的に無限に多くの設計に対してEIGを推定できる新しいニューラルアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-10-07T02:12:34Z) - Policy-Based Bayesian Experimental Design for Non-Differentiable
Implicit Models [25.00242490764664]
深層適応設計のための強化学習(Reinforcement Learning for Deep Adaptive Design, RL-DAD)は、非微分不可能な暗黙モデルに対するシミュレーションに基づく最適実験設計手法である。
RL-DADは、事前履歴をオフラインで実験するためにマッピングし、オンライン実行中に素早くデプロイできる。
論文 参考訳(メタデータ) (2022-03-08T18:47:01Z) - Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design [11.414086057582324]
本稿では,逐次適応実験のコストを補正する手法であるDeep Adaptive Design (DAD)を紹介する。
DADが実験設計のプロセスに成功したことを実証し、いくつかの問題に対する代替戦略を上回ります。
論文 参考訳(メタデータ) (2021-03-03T14:43:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。