論文の概要: Online simulator-based experimental design for cognitive model selection
- arxiv url: http://arxiv.org/abs/2303.02227v1
- Date: Fri, 3 Mar 2023 21:41:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-07 20:50:11.439712
- Title: Online simulator-based experimental design for cognitive model selection
- Title(参考訳): オンラインシミュレータによる認知モデル選択のための実験設計
- Authors: Alexander Aushev, Aini Putkonen, Gregoire Clarte, Suyog Chandramouli,
Luigi Acerbi, Samuel Kaski, Andrew Howes
- Abstract要約: 本稿では,抽出可能な確率を伴わない計算モデルを選択する実験設計手法BOSMOSを提案する。
シミュレーション実験では,提案手法により,既存のLFI手法に比べて最大2桁の精度でモデルを選択することができることを示した。
- 参考スコア(独自算出の注目度): 74.76661199843284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of model selection with a limited number of experimental trials
has received considerable attention in cognitive science, where the role of
experiments is to discriminate between theories expressed as computational
models. Research on this subject has mostly been restricted to optimal
experiment design with analytically tractable models. However, cognitive models
of increasing complexity, with intractable likelihoods, are becoming more
commonplace. In this paper, we propose BOSMOS: an approach to experimental
design that can select between computational models without tractable
likelihoods. It does so in a data-efficient manner, by sequentially and
adaptively generating informative experiments. In contrast to previous
approaches, we introduce a novel simulator-based utility objective for design
selection, and a new approximation of the model likelihood for model selection.
In simulated experiments, we demonstrate that the proposed BOSMOS technique can
accurately select models in up to 2 orders of magnitude less time than existing
LFI alternatives for three cognitive science tasks: memory retention,
sequential signal detection and risky choice.
- Abstract(参考訳): 限定的な実験によるモデル選択の問題は認知科学においてかなりの注目を集めており、実験の役割は計算モデルとして表される理論を区別することである。
この研究は、主に解析的に抽出可能なモデルを用いた最適な実験設計に限られている。
しかし、複雑性を増大させる認知モデルは、難解な可能性を持って、より一般的なものになりつつある。
本稿では,抽出可能な可能性のない計算モデル間を選択可能な実験設計手法BOSMOSを提案する。
データ効率のよい方法で、逐次かつ適応的に情報的実験を生成する。
従来の手法とは対照的に,新しい設計選択のためのシミュレータベースの実用目的と,モデル選択のためのモデル可能性の近似を提案する。
シミュレーション実験により,提案手法は,メモリ保持,シーケンシャル信号検出,リスク選択という3つの認知科学タスクにおいて,既存のlfi代替手法よりも最大2桁少ない時間でモデルを正確に選択できることを実証した。
関連論文リスト
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
機械学習とベイズ最適実験設計(BOED)を組み合わせた方法論を提案する。
本手法は,大規模スピンダイナミクスシミュレーションのためのニューラルネットワークモデルを用いて,BOEDの正確な分布と実用計算を行う。
数値ベンチマークでは,XPFS実験の誘導,モデルパラメータの予測,実験時間内でのより情報的な測定を行う上で,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-03T06:19:20Z) - Designing Optimal Behavioral Experiments Using Machine Learning [8.759299724881219]
BOEDと機械学習の最近の進歩を活用して、あらゆる種類のモデルに対して最適な実験を見つけるためのチュートリアルを提供する。
マルチアームバンディット意思決定タスクにおける探索と搾取のバランスに関する理論を考察する。
文献でよく用いられる実験的な設計と比較すると、最適な設計は個人の行動に最適なモデルのどれが最適かをより効率的に決定する。
論文 参考訳(メタデータ) (2023-05-12T18:24:30Z) - Design Amortization for Bayesian Optimal Experimental Design [70.13948372218849]
予測情報ゲイン(EIG)のバウンダリに関してパラメータ化された変分モデルを最適化する。
実験者が1つの変分モデルを最適化し、潜在的に無限に多くの設計に対してEIGを推定できる新しいニューラルアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-10-07T02:12:34Z) - Planning with Diffusion for Flexible Behavior Synthesis [125.24438991142573]
我々は、できるだけ多くの軌道最適化パイプラインをモデリング問題に折り畳むことがどう見えるか検討する。
我々の技術的アプローチの核心は、軌道を反復的にデノベーションすることで計画する拡散確率モデルにある。
論文 参考訳(メタデータ) (2022-05-20T07:02:03Z) - Bayesian Optimal Experimental Design for Simulator Models of Cognition [14.059933880568908]
BOEDの最近の進歩と、難解モデルに対する近似推論を組み合わせ、最適な実験設計を求める。
マルチアームバンディットタスクのシミュレーション実験により,モデル判別とパラメータ推定の改善が得られた。
論文 参考訳(メタデータ) (2021-10-29T09:04:01Z) - Gradient-based Bayesian Experimental Design for Implicit Models using
Mutual Information Lower Bounds [20.393359858407162]
ベイズ実験設計のためのフレームワーク(BED)を暗黙のモデルで導入する。データ生成分布は難解だが、そこからのサンプリングは可能である。
このようなモデルに最適な実験設計を見つけるために、ニューラルネットワークがパラメータとする相互情報の低い境界を最大化します。
ニューラルネットワークをサンプルデータ上でトレーニングすることで,勾配アセンシングを用いたネットワークパラメータと設計を同時に更新する。
論文 参考訳(メタデータ) (2021-05-10T13:59:25Z) - Cognitive simulation models for inertial confinement fusion: Combining
simulation and experimental data [0.0]
研究者は、高性能な爆発を求めて設計空間を探索するためにコンピュータシミュレーションに大きく依存しています。
より効果的な設計と調査のために、シミュレーションは過去の実験データからの入力を必要とする。
本稿では,シミュレーションと実験データを共通の予測モデルに組み合わせた認知シミュレーション手法について述べる。
論文 参考訳(メタデータ) (2021-03-19T02:00:14Z) - Bayesian Experimental Design for Implicit Models by Mutual Information
Neural Estimation [16.844481439960663]
データ・ジェネレーションの分布が魅力的ながサンプリングが可能なインプリシット・モデルは、自然科学においてユビキタスである。
基本的な問題は、収集したデータが最も有用になるように実験を設計する方法である。
しかし、暗黙のモデルでは、この手法は後続計算の計算コストが高いために著しく妨げられている。
ニューラルネットワークをトレーニングして、MIの下位境界を最大化することで、最適な設計と後部を共同で決定できることが示される。
論文 参考訳(メタデータ) (2020-02-19T12:09:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。