論文の概要: Communication-Efficient Separable Neural Network for Distributed
Inference on Edge Devices
- arxiv url: http://arxiv.org/abs/2111.02489v1
- Date: Wed, 3 Nov 2021 19:30:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-06 03:12:57.478710
- Title: Communication-Efficient Separable Neural Network for Distributed
Inference on Edge Devices
- Title(参考訳): エッジデバイス上での分散推論のための通信効率の良い分離型ニューラルネットワーク
- Authors: Jun-Liang Lin and Sheng-De Wang
- Abstract要約: 本稿では,分散推論のためのニューラルネットワークを分離するために,モデル並列性を利用する新しい手法を提案する。
デバイスの適切な仕様とモデルの構成の下で、エッジクラスタ上の大規模ニューラルネットワークの推論が分散し、加速可能であることを示す実験を行った。
- 参考スコア(独自算出の注目度): 2.28438857884398
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The inference of Neural Networks is usually restricted by the resources
(e.g., computing power, memory, bandwidth) on edge devices. In addition to
improving the hardware design and deploying efficient models, it is possible to
aggregate the computing power of many devices to enable the machine learning
models. In this paper, we proposed a novel method of exploiting model
parallelism to separate a neural network for distributed inferences. To achieve
a better balance between communication latency, computation latency, and
performance, we adopt neural architecture search (NAS) to search for the best
transmission policy and reduce the amount of communication. The best model we
found decreases by 86.6% of the amount of data transmission compared to the
baseline and does not impact performance much. Under proper specifications of
devices and configurations of models, our experiments show that the inference
of large neural networks on edge clusters can be distributed and accelerated,
which provides a new solution for the deployment of intelligent applications in
the internet of things (IoT).
- Abstract(参考訳): ニューラルネットワークの推論は通常、エッジデバイス上のリソース(例えば、コンピューティングパワー、メモリ、帯域幅)によって制限される。
ハードウェア設計の改善と効率的なモデルのデプロイに加えて、多くのデバイスのコンピューティングパワーを集約して機械学習モデルを有効にすることができる。
本稿では,分散推論のためのニューラルネットワークを分離するためにモデル並列性を利用する新しい手法を提案する。
通信遅延,計算遅延,性能のバランスを改善するために,最適な伝送ポリシを探索し通信量を削減するためにニューラルネットワーク検索(nas)を採用している。
最良のモデルは、ベースラインと比較してデータ転送量の86.6%減少し、パフォーマンスにはあまり影響しない。
デバイスの適切な仕様とモデルの構成の下で、エッジクラスタ上の大規模ニューラルネットワークの推論が分散し、加速可能であることを示し、モノのインターネット(IoT)にインテリジェントなアプリケーションをデプロイするための新しいソリューションを提供する。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - RNC: Efficient RRAM-aware NAS and Compilation for DNNs on Resource-Constrained Edge Devices [0.30458577208819987]
我々は抵抗性ランダムアクセスメモリ(RRAM)に基づく加速器のためのエッジフレンドリーなディープニューラルネットワーク(DNN)の開発を目指している。
本稿では,特定のハードウェア制約を満たす最適化ニューラルネットワークを探索するための,エッジコンパイルとリソース制約付きRRAM対応ニューラルネットワーク探索(NAS)フレームワークを提案する。
NASが速度に最適化した結果のモデルは5x-30倍のスピードアップを達成した。
論文 参考訳(メタデータ) (2024-09-27T15:35:36Z) - The Robustness of Spiking Neural Networks in Communication and its Application towards Network Efficiency in Federated Learning [6.9569682335746235]
スパイキングニューラルネットワーク(SNN)は最近、組み込みデバイスでのオンチップ学習に多大な関心を集めている。
本稿では,フェデレートラーニングにおける雑音の多いコミュニケーション下でのSNNの本質的ロバスト性について検討する。
FLトレーニングにおける帯域幅の削減を目的とした,TopKスパシフィケーションを用いた新しいフェデレートラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-19T13:37:18Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
独立サブネットワークトレーニング(IST)の理論的考察
ISTは、上記の問題を解決するための、最近提案され、非常に効果的である。
圧縮通信を用いた分散手法など,ISTと代替手法の基本的な違いを同定する。
論文 参考訳(メタデータ) (2023-06-28T18:14:22Z) - Neural Architecture Search for Improving Latency-Accuracy Trade-off in
Split Computing [5.516431145236317]
スプリットコンピューティングは、IoTシステムにディープラーニングをデプロイする際のプライバシとレイテンシの問題に対処する、新たな機械学習推論技術である。
スプリットコンピューティングでは、ニューラルネットワークモデルは、エッジサーバとIoTデバイスをネットワークを介して分離し、協調的に処理される。
本稿ではスプリットコンピューティングのためのニューラルアーキテクチャサーチ(NAS)手法を提案する。
論文 参考訳(メタデータ) (2022-08-30T03:15:43Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
エッジ対応産業用IoTネットワークにおける計算知能とディープラーニング(DL)の展開方法について検討する。
本稿では,新しいマルチエグジットベースフェデレーションエッジ学習(ME-FEEL)フレームワークを提案する。
特に、提案されたME-FEELは、非常に限られたリソースを持つ産業用IoTネットワークにおいて、最大32.7%の精度を達成することができる。
論文 参考訳(メタデータ) (2021-10-28T08:14:57Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
本稿では,正弦波数を検出するニューラルネットワークアーキテクチャであるSignalNetを提案する。
基礎となるデータ分布と比較して,ネットワークの結果を比較するための最悪の学習しきい値を導入する。
シミュレーションでは、我々のアルゴリズムは常に3ビットデータのしきい値を超えることができるが、しばしば1ビットデータのしきい値を超えることはできない。
論文 参考訳(メタデータ) (2021-06-10T04:21:20Z) - Efficient Low-Latency Dynamic Licensing for Deep Neural Network
Deployment on Edge Devices [0.0]
エッジデバイス上でのディープニューラルネットワークの展開と処理を解決するアーキテクチャを提案する。
このアーキテクチャを採用することで、デバイスの低レイテンシモデル更新が可能になる。
論文 参考訳(メタデータ) (2021-02-24T09:36:39Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
我々は,MS-RANAS(Multi-Scale Resource-Aware Neural Architecture Search)を提案する。
我々は,検索コストの削減を図るために,ワンショットのアーキテクチャ探索手法を採用した。
我々は精度-速度トレードオフの観点から最先端の結果を得る。
論文 参考訳(メタデータ) (2020-09-29T11:56:01Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。