On Semantic Cognition, Inductive Generalization, and Language Models
- URL: http://arxiv.org/abs/2111.02603v1
- Date: Thu, 4 Nov 2021 03:19:52 GMT
- Title: On Semantic Cognition, Inductive Generalization, and Language Models
- Authors: Kanishka Misra
- Abstract summary: My research focuses on understanding semantic knowledge in neural network models trained solely to predict natural language (referred to as language models, or LMs)
I propose a framework inspired by 'inductive reasoning,' a phenomenon that sheds light on how humans utilize background knowledge to make inductive leaps and generalize from new pieces of information about concepts and their properties.
- Score: 0.2538209532048867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: My doctoral research focuses on understanding semantic knowledge in neural
network models trained solely to predict natural language (referred to as
language models, or LMs), by drawing on insights from the study of concepts and
categories grounded in cognitive science. I propose a framework inspired by
'inductive reasoning,' a phenomenon that sheds light on how humans utilize
background knowledge to make inductive leaps and generalize from new pieces of
information about concepts and their properties. Drawing from experiments that
study inductive reasoning, I propose to analyze semantic inductive
generalization in LMs using phenomena observed in human-induction literature,
investigate inductive behavior on tasks such as implicit reasoning and emergent
feature recognition, and analyze and relate induction dynamics to the learned
conceptual representation space.
Related papers
- The Cognitive Revolution in Interpretability: From Explaining Behavior to Interpreting Representations and Algorithms [3.3653074379567096]
mechanistic interpretability (MI) has emerged as a distinct research area studying the features and implicit algorithms learned by foundation models such as large language models.
We argue that current methods are ripe to facilitate a transition in deep learning interpretation echoing the "cognitive revolution" in 20th-century psychology.
We propose a taxonomy mirroring key parallels in computational neuroscience to describe two broad categories of MI research.
arXiv Detail & Related papers (2024-08-11T20:50:16Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Phenomenal Yet Puzzling: Testing Inductive Reasoning Capabilities of Language Models with Hypothesis Refinement [92.61557711360652]
Language models (LMs) often fall short on inductive reasoning, despite achieving impressive success on research benchmarks.
We conduct a systematic study of the inductive reasoning capabilities of LMs through iterative hypothesis refinement.
We reveal several discrepancies between the inductive reasoning processes of LMs and humans, shedding light on both the potentials and limitations of using LMs in inductive reasoning tasks.
arXiv Detail & Related papers (2023-10-12T17:51:10Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
Large Language Models (LLMs) have excited the natural language and machine learning community over recent years.
Despite of numerous successful applications, the underlying mechanism of such in-context capabilities still remains unclear.
In this work, we hypothesize that the learned textitsemantics of language tokens do the most heavy lifting during the reasoning process.
arXiv Detail & Related papers (2023-05-24T07:33:34Z) - Rejecting Cognitivism: Computational Phenomenology for Deep Learning [5.070542698701158]
We propose a non-representationalist framework for deep learning relying on a novel method: computational phenomenology.
We reject the modern cognitivist interpretation of deep learning, according to which artificial neural networks encode representations of external entities.
arXiv Detail & Related papers (2023-02-16T20:05:06Z) - Mapping Knowledge Representations to Concepts: A Review and New
Perspectives [0.6875312133832078]
This review focuses on research that aims to associate internal representations with human understandable concepts.
We find this taxonomy and theories of causality, useful for understanding what can be expected, and not expected, from neural network explanations.
The analysis additionally uncovers an ambiguity in the reviewed literature related to the goal of model explainability.
arXiv Detail & Related papers (2022-12-31T12:56:12Z) - Language Models as Inductive Reasoners [125.99461874008703]
We propose a new paradigm (task) for inductive reasoning, which is to induce natural language rules from natural language facts.
We create a dataset termed DEER containing 1.2k rule-fact pairs for the task, where rules and facts are written in natural language.
We provide the first and comprehensive analysis of how well pretrained language models can induce natural language rules from natural language facts.
arXiv Detail & Related papers (2022-12-21T11:12:14Z) - Acquiring and Modelling Abstract Commonsense Knowledge via Conceptualization [49.00409552570441]
We study the role of conceptualization in commonsense reasoning, and formulate a framework to replicate human conceptual induction.
We apply the framework to ATOMIC, a large-scale human-annotated CKG, aided by the taxonomy Probase.
arXiv Detail & Related papers (2022-06-03T12:24:49Z) - Learnable Visual Words for Interpretable Image Recognition [70.85686267987744]
We propose the Learnable Visual Words (LVW) to interpret the model prediction behaviors with two novel modules.
The semantic visual words learning relaxes the category-specific constraint, enabling the general visual words shared across different categories.
Our experiments on six visual benchmarks demonstrate the superior effectiveness of our proposed LVW in both accuracy and model interpretation.
arXiv Detail & Related papers (2022-05-22T03:24:45Z) - A Property Induction Framework for Neural Language Models [8.08493736237816]
We present a framework that uses neural-network language models (LMs) to perform property induction.
We find that LMs show an inductive preference to generalize novel properties on the basis of category membership.
arXiv Detail & Related papers (2022-05-13T22:05:49Z) - Revisit Systematic Generalization via Meaningful Learning [15.90288956294373]
Recent studies argue that neural networks appear inherently ineffective in such cognitive capacity.
We reassess the compositional skills of sequence-to-sequence models conditioned on the semantic links between new and old concepts.
arXiv Detail & Related papers (2020-03-14T15:27:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.