Facial Emotion Recognition using Deep Residual Networks in Real-World
Environments
- URL: http://arxiv.org/abs/2111.02717v1
- Date: Thu, 4 Nov 2021 10:08:22 GMT
- Title: Facial Emotion Recognition using Deep Residual Networks in Real-World
Environments
- Authors: Panagiotis Tzirakis, D\'enes Boros, Elnar Hajiyev, Bj\"orn W. Schuller
- Abstract summary: We propose a facial feature extractor model trained on an in-the-wild and massively collected video dataset.
The dataset consists of a million labelled frames and 2,616 thousand subjects.
As temporal information is important to the emotion recognition domain, we utilise LSTM cells to capture the temporal dynamics in the data.
- Score: 5.834678345946704
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic affect recognition using visual cues is an important task towards a
complete interaction between humans and machines. Applications can be found in
tutoring systems and human computer interaction. A critical step towards that
direction is facial feature extraction. In this paper, we propose a facial
feature extractor model trained on an in-the-wild and massively collected video
dataset provided by the RealEyes company. The dataset consists of a million
labelled frames and 2,616 thousand subjects. As temporal information is
important to the emotion recognition domain, we utilise LSTM cells to capture
the temporal dynamics in the data. To show the favourable properties of our
pre-trained model on modelling facial affect, we use the RECOLA database, and
compare with the current state-of-the-art approach. Our model provides the best
results in terms of concordance correlation coefficient.
Related papers
- SDFR: Synthetic Data for Face Recognition Competition [51.9134406629509]
Large-scale face recognition datasets are collected by crawling the Internet and without individuals' consent, raising legal, ethical, and privacy concerns.
Recently several works proposed generating synthetic face recognition datasets to mitigate concerns in web-crawled face recognition datasets.
This paper presents the summary of the Synthetic Data for Face Recognition (SDFR) Competition held in conjunction with the 18th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024)
The SDFR competition was split into two tasks, allowing participants to train face recognition systems using new synthetic datasets and/or existing ones.
arXiv Detail & Related papers (2024-04-06T10:30:31Z) - Emotion Recognition from the perspective of Activity Recognition [0.0]
Appraising human emotional states, behaviors, and reactions displayed in real-world settings can be accomplished using latent continuous dimensions.
For emotion recognition systems to be deployed and integrated into real-world mobile and computing devices, we need to consider data collected in the world.
We propose a novel three-stream end-to-end deep learning regression pipeline with an attention mechanism.
arXiv Detail & Related papers (2024-03-24T18:53:57Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - Towards In-Vehicle Multi-Task Facial Attribute Recognition:
Investigating Synthetic Data and Vision Foundation Models [8.54530542456452]
We investigate the utility of synthetic datasets for training complex multi-task models that recognize facial attributes of passengers of a vehicle.
Our study unveils counter-intuitive findings, notably the superior performance of ResNet over ViTs in our specific multi-task context.
arXiv Detail & Related papers (2024-03-10T04:17:54Z) - Face Recognition Using Synthetic Face Data [0.0]
We highlight the promising application of synthetic data, generated through rendering digital faces via our computer graphics pipeline, in achieving competitive results.
By finetuning the model,we obtain results that rival those achieved when training with hundreds of thousands of real images.
We also investigate the contribution of adding intra-class variance factors (e.g., makeup, accessories, haircuts) on model performance.
arXiv Detail & Related papers (2023-05-17T09:26:10Z) - A Comparative Study of Data Augmentation Techniques for Deep Learning
Based Emotion Recognition [11.928873764689458]
We conduct a comprehensive evaluation of popular deep learning approaches for emotion recognition.
We show that long-range dependencies in the speech signal are critical for emotion recognition.
Speed/rate augmentation offers the most robust performance gain across models.
arXiv Detail & Related papers (2022-11-09T17:27:03Z) - Differentiable Frequency-based Disentanglement for Aerial Video Action
Recognition [56.91538445510214]
We present a learning algorithm for human activity recognition in videos.
Our approach is designed for UAV videos, which are mainly acquired from obliquely placed dynamic cameras.
We conduct extensive experiments on the UAV Human dataset and the NEC Drone dataset.
arXiv Detail & Related papers (2022-09-15T22:16:52Z) - CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
We propose Contrastive Inhibitory Adaptati On (CIAO), a mechanism that adapts the last layer of facial encoders to depict specific affective characteristics on different datasets.
CIAO presents an improvement in facial expression recognition performance over six different datasets with very unique affective representations.
arXiv Detail & Related papers (2022-08-10T15:46:05Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
We devise the SynFace with identity mixup (IM) and domain mixup (DM) to mitigate the performance gap.
We also perform a systematically empirical analysis on synthetic face images to provide some insights on how to effectively utilize synthetic data for face recognition.
arXiv Detail & Related papers (2021-08-18T03:41:54Z) - A Multi-resolution Approach to Expression Recognition in the Wild [9.118706387430883]
We propose a multi-resolution approach to solve the Facial Expression Recognition task.
We ground our intuition on the observation that often faces images are acquired at different resolutions.
To our aim, we use a ResNet-like architecture, equipped with Squeeze-and-Excitation blocks, trained on the Affect-in-the-Wild 2 dataset.
arXiv Detail & Related papers (2021-03-09T21:21:02Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
It is crucial that the machine should be able to recognize the emotional state of the user with high accuracy.
Deep neural networks have been used with great success in recognizing emotions.
We present a new model for continuous emotion recognition based on facial expression recognition.
arXiv Detail & Related papers (2020-01-31T17:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.