論文の概要: A Cyber Threat Intelligence Sharing Scheme based on Federated Learning
for Network Intrusion Detection
- arxiv url: http://arxiv.org/abs/2111.02791v1
- Date: Thu, 4 Nov 2021 12:06:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-05 19:58:48.605846
- Title: A Cyber Threat Intelligence Sharing Scheme based on Federated Learning
for Network Intrusion Detection
- Title(参考訳): ネットワーク侵入検出のための連合学習に基づくサイバー脅威情報共有方式
- Authors: Mohanad Sarhan, Siamak Layeghy, Nour Moustafa, Marius Portmann
- Abstract要約: プライバシの懸念とデータセットの普遍的なフォーマットの欠如に対処するために,協調学習方式を提案する。
提案したフレームワークにより、複数の組織が、堅牢なMLベースのネットワーク侵入検知システムの設計、トレーニング、評価に参加することができる。
- 参考スコア(独自算出の注目度): 3.5557219875516655
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The uses of Machine Learning (ML) in detection of network attacks have been
effective when designed and evaluated in a single organisation. However, it has
been very challenging to design an ML-based detection system by utilising
heterogeneous network data samples originating from several sources. This is
mainly due to privacy concerns and the lack of a universal format of datasets.
In this paper, we propose a collaborative federated learning scheme to address
these issues. The proposed framework allows multiple organisations to join
forces in the design, training, and evaluation of a robust ML-based network
intrusion detection system. The threat intelligence scheme utilises two
critical aspects for its application; the availability of network data traffic
in a common format to allow for the extraction of meaningful patterns across
data sources. Secondly, the adoption of a federated learning mechanism to avoid
the necessity of sharing sensitive users' information between organisations. As
a result, each organisation benefits from other organisations cyber threat
intelligence while maintaining the privacy of its data internally. The model is
trained locally and only the updated weights are shared with the remaining
participants in the federated averaging process. The framework has been
designed and evaluated in this paper by using two key datasets in a NetFlow
format known as NF-UNSW-NB15-v2 and NF-BoT-IoT-v2. Two other common scenarios
are considered in the evaluation process; a centralised training method where
the local data samples are shared with other organisations and a localised
training method where no threat intelligence is shared. The results demonstrate
the efficiency and effectiveness of the proposed framework by designing a
universal ML model effectively classifying benign and intrusive traffic
originating from multiple organisations without the need for local data
exchange.
- Abstract(参考訳): ネットワーク攻撃の検出における機械学習(ML)の使用は、単一の組織で設計および評価を行う際に有効である。
しかし,複数の情報源から得られた異種ネットワークデータを用いてMLに基づく検出システムを設計することは極めて困難である。
これは主に、プライバシー上の懸念と、データセットの普遍的なフォーマットがないためである。
本稿では,これらの問題に対処するための協調学習手法を提案する。
提案されたフレームワークにより、複数の組織が堅牢なmlベースのネットワーク侵入検出システムの設計、トレーニング、評価に協力することができる。
脅威インテリジェンススキームは、ネットワークデータトラフィックを共通のフォーマットで利用することで、データソース間で意味のあるパターンを抽出する、という2つの重要な側面を利用する。
第二に、組織間で機密情報を共有する必要性を避けるための連合学習機構の採用。
その結果、各組織は、内部でデータのプライバシーを維持しながら、他の組織のサイバー脅威インテリジェンスから恩恵を受けます。
モデルは局所的に訓練され、更新された重量のみが、連合平均化プロセスの残りの参加者と共有される。
このフレームワークは、NF-UNSW-NB15-v2とNF-BoT-IoT-v2として知られるNetFlowフォーマットで2つのキーデータセットを用いて設計、評価されている。
評価プロセスでは、ローカルデータサンプルを他の組織と共有する集中トレーニング方法と、脅威情報を共有しない局所トレーニング方法の2つの一般的なシナリオが検討されている。
提案手法は,局所的なデータ交換を必要とせず,複数の組織から発生した良性および侵入的トラフィックを効果的に分類するユニバーサルmlモデルを設計し,その効率と有効性を示す。
関連論文リスト
- Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Decentralized Online Federated G-Network Learning for Lightweight
Intrusion Detection [2.7225008315665424]
本稿では,協調学習を用いたGネットワークモデルに基づく分散・オンラインフェデレート学習侵入検出アーキテクチャを提案する。
公的なKitsuneデータセットとBot-IoTデータセットを用いた性能評価の結果、DOF-IDは、すべての協調コンポーネントの侵入検出性能を大幅に改善することが示された。
論文 参考訳(メタデータ) (2023-06-22T16:46:00Z) - Towards Cooperative Federated Learning over Heterogeneous Edge/Fog
Networks [49.19502459827366]
フェデレートラーニング(FL)は、エッジ/フォグネットワーク上で機械学習(ML)モデルをトレーニングするための一般的なテクニックとして推奨されている。
FLの従来の実装は、ネットワーク間協力の可能性を大きく無視してきた。
我々は,デバイス・ツー・デバイス(D2D)とデバイス・ツー・サーバ(D2S)インタラクションに基づいて構築された協調的エッジ/フォグMLパラダイムである協調的連合学習(CFL)を提唱する。
論文 参考訳(メタデータ) (2023-03-15T04:41:36Z) - GowFed -- A novel Federated Network Intrusion Detection System [0.15469452301122172]
本研究は,Gower Dissimilarity行列とFederated Averagingを併用したネットワーク脅威検出システムであるGowFedを紹介する。
GowFedのアプローチは,(1)バニラバージョン,(2)アテンション機構を備えたバージョンなど,最先端の知識に基づいて開発されている。
全体として、GowFedは、産業レベルのネットワークにおけるネットワーク脅威を検出するためのフェデレートラーニングとガウワーの相違行列の併用に向けた最初の一歩となる。
論文 参考訳(メタデータ) (2022-10-28T23:53:37Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - An Interpretable Federated Learning-based Network Intrusion Detection
Framework [9.896258523574424]
FEDFORESTは、解釈可能なグラディエントブースティング決定木(GBDT)とフェデレートラーニング(FL)フレームワークを組み合わせた、新しい学習ベースのNIDSである。
FEDFORESTは複数のクライアントで構成されており、サーバがモデルをトレーニングし、侵入を検出するために、ローカルなサイバー攻撃データ特徴を抽出する。
4つのサイバーアタックデータセットの実験は、FEDFORESTが効率的、効率的、解釈可能、拡張可能であることを示した。
論文 参考訳(メタデータ) (2022-01-10T02:12:32Z) - Segmented Federated Learning for Adaptive Intrusion Detection System [0.6445605125467573]
サイバー攻撃は組織に大きな財政的利益をもたらし、評判を害する。
現在のネットワーク侵入検知システム(NIDS)は不十分なようだ。
より効率的なNIDSのためのSegmented-Federated Learning(Segmented-FL)学習手法を提案する。
論文 参考訳(メタデータ) (2021-07-02T07:47:05Z) - An Explainable Machine Learning-based Network Intrusion Detection System
for Enabling Generalisability in Securing IoT Networks [0.0]
機械学習(ML)ベースのネットワーク侵入検知システムは、組織のセキュリティ姿勢を高める多くの利点をもたらす。
多くのシステムは研究コミュニティで設計・開発されており、特定のデータセットを用いて評価すると、しばしば完璧な検出率を達成する。
本稿では,異なるネットワーク環境と攻撃タイプに設定した共通機能の汎用性を評価することにより,ギャップを狭める。
論文 参考訳(メタデータ) (2021-04-15T00:44:45Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - PIN: A Novel Parallel Interactive Network for Spoken Language
Understanding [68.53121591998483]
既存の RNN ベースのアプローチでは、ID と SF のタスクは、それらの間の相関情報を利用するために、しばしば共同でモデル化される。
SNIPSとATISという2つのベンチマークデータセットによる実験は、我々のアプローチの有効性を実証している。
さらに,事前学習した言語モデルBERTが生成した発話の特徴埋め込みを用いて,提案手法はすべての比較手法の中で最先端の手法を実現する。
論文 参考訳(メタデータ) (2020-09-28T15:59:31Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
データが機密性やプライベート性を持つドメインでは、ローカルデバイスを離れることなく、分散的に学習できるメソッドには大きな価値があります。
本稿では,フェデレートラーニングのためのウェイト匿名化因子化(WAFFLe)を提案する。これは,インド・バフェット・プロセスとニューラルネットワークの重み要因の共有辞書を組み合わせたアプローチである。
論文 参考訳(メタデータ) (2020-08-13T04:26:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。