論文の概要: Identifying nonlinear dynamical systems from multi-modal time series
data
- arxiv url: http://arxiv.org/abs/2111.02922v1
- Date: Thu, 4 Nov 2021 14:59:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-05 18:02:07.672428
- Title: Identifying nonlinear dynamical systems from multi-modal time series
data
- Title(参考訳): 多モード時系列データによる非線形力学系の同定
- Authors: Philine Lou Bommer, Daniel Kramer, Carlo Tombolini, Georgia Koppe and
Daniel Durstewitz
- Abstract要約: 物理学、生物学、医学における経験的に観察された時系列は、一般的に、基礎となる力学系(DS)によって生成される。
完全にデータ駆動で教師なしの方法で、この潜伏するDSを再構築するための機械学習手法の収集への関心が高まっている。
本稿では,非線形DS識別とクロスモーダル予測を目的としたマルチモーダルデータ統合のための汎用フレームワークを提案する。
- 参考スコア(独自算出の注目度): 3.721528851694675
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Empirically observed time series in physics, biology, or medicine, are
commonly generated by some underlying dynamical system (DS) which is the target
of scientific interest. There is an increasing interest to harvest machine
learning methods to reconstruct this latent DS in a completely data-driven,
unsupervised way. In many areas of science it is common to sample time series
observations from many data modalities simultaneously, e.g.
electrophysiological and behavioral time series in a typical neuroscience
experiment. However, current machine learning tools for reconstructing DSs
usually focus on just one data modality. Here we propose a general framework
for multi-modal data integration for the purpose of nonlinear DS identification
and cross-modal prediction. This framework is based on dynamically
interpretable recurrent neural networks as general approximators of nonlinear
DSs, coupled to sets of modality-specific decoder models from the class of
generalized linear models. Both an expectation-maximization and a variational
inference algorithm for model training are advanced and compared. We show on
nonlinear DS benchmarks that our algorithms can efficiently compensate for too
noisy or missing information in one data channel by exploiting other channels,
and demonstrate on experimental neuroscience data how the algorithm learns to
link different data domains to the underlying dynamics
- Abstract(参考訳): 物理学、生物学、医学において経験的に観察された時系列は、科学的な関心の対象である力学系(ds)によって一般的に生成される。
完全にデータ駆動で教師なしの方法で、この潜伏するDSを再構築するための機械学習手法の収集への関心が高まっている。
科学の多くの分野において、典型的な神経科学実験における電気生理学的および行動的時系列など、多くのデータモダリティからの時系列観測を同時にサンプリングすることは一般的である。
しかしながら、DSを再構築するための現在の機械学習ツールは、通常、1つのデータモダリティだけに焦点を当てる。
本稿では,非線形DS識別とクロスモーダル予測を目的としたマルチモーダルデータ統合のための汎用フレームワークを提案する。
このフレームワークは、非線形DSの一般近似として動的に解釈可能なリカレントニューラルネットワークに基づいており、一般化線形モデルのクラスからのモジュラリティ特異的デコーダモデルのセットと結合している。
予測最大化とモデルトレーニングのための変分推論アルゴリズムの両方を改良して比較する。
非線形DSベンチマークにおいて、我々のアルゴリズムは、他のチャネルを活用することで、1つのデータチャネル内のノイズや欠落した情報を効率的に補償できることを示し、アルゴリズムが異なるデータドメインを基礎となるダイナミクスにリンクする方法を実験的な神経科学データで示す。
関連論文リスト
- Foundational Inference Models for Dynamical Systems [5.549794481031468]
我々は,ODEによって決定されると仮定される時系列データの欠落を補うという古典的な問題に対して,新たな視点を提供する。
本稿では,いくつかの(隠れた)ODEを満たすパラメトリック関数を通じて,ゼロショット時系列計算のための新しい教師付き学習フレームワークを提案する。
我々は,1と同一(事前学習)の認識モデルが,63個の異なる時系列に対してゼロショット計算を行なえることを実証的に実証した。
論文 参考訳(メタデータ) (2024-02-12T11:48:54Z) - Neural Koopman prior for data assimilation [7.875955593012905]
ニューラルネットワークアーキテクチャを使って、潜在空間に動的システムを埋め込む。
本研究では,このようなモデルを長期の継続的再構築のために訓練する手法を提案する。
また,変動データ同化手法の先行として,訓練された動的モデルの有望な利用を示すとともに,自己教師型学習の可能性も示された。
論文 参考訳(メタデータ) (2023-09-11T09:04:36Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
本研究では,高次元経験データから力学系を学習する手法を提案する。
我々は、システムの複数の異なるインスタンスからデータが利用できる設定に焦点を当てる。
我々は、単純な理論的分析と、合成および実世界のデータセットに関する広範な実験を通して行動を研究する。
論文 参考訳(メタデータ) (2023-06-21T07:52:07Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - Integrating Multimodal Data for Joint Generative Modeling of Complex Dynamics [6.848555909346641]
最適復元のための様々な情報ソースを組み合わせるための効率的なフレームワークを提供する。
我々のフレームワークは完全にテキスト生成され、訓練後に、基底真理系と同じ幾何学的、時間的構造を持つ軌道を生成します。
論文 参考訳(メタデータ) (2022-12-15T15:21:28Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
ダイナミカルシステムの研究において,連続時間における因果的発見を検討する。
本稿では,ニューラルネットワークを用いた因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-06T08:48:02Z) - CARRNN: A Continuous Autoregressive Recurrent Neural Network for Deep
Representation Learning from Sporadic Temporal Data [1.8352113484137622]
本稿では,散発データにおける複数の時間的特徴をモデル化するための新しい深層学習モデルを提案する。
提案モデルはCARRNNと呼ばれ、時間ラグによって変調されたニューラルネットワークを用いてエンドツーエンドにトレーニング可能な一般化された離散時間自己回帰モデルを使用する。
アルツハイマー病進行モデルおよび集中治療単位(ICU)死亡率予測のためのデータを用いて,多変量時系列回帰タスクに適用した。
論文 参考訳(メタデータ) (2021-04-08T12:43:44Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。