Multi-Objective Constrained Optimization for Energy Applications via
Tree Ensembles
- URL: http://arxiv.org/abs/2111.03140v1
- Date: Thu, 4 Nov 2021 20:18:55 GMT
- Title: Multi-Objective Constrained Optimization for Energy Applications via
Tree Ensembles
- Authors: Alexander Thebelt, Calvin Tsay, Robert M. Lee, Nathan Sudermann-Merx,
David Walz, Tom Tranter and Ruth Misener
- Abstract summary: Energy systems optimization problems are complex due to strongly non-linear system behavior and multiple competing objectives.
In some cases, proposed optimal solutions need to obey explicit input constraints related to physical properties or safety-critical operating conditions.
This paper proposes a novel data-driven strategy using tree ensembles for constrained multi-objective optimization of black-box problems.
- Score: 55.23285485923913
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Energy systems optimization problems are complex due to strongly non-linear
system behavior and multiple competing objectives, e.g. economic gain vs.
environmental impact. Moreover, a large number of input variables and different
variable types, e.g. continuous and categorical, are challenges commonly
present in real-world applications. In some cases, proposed optimal solutions
need to obey explicit input constraints related to physical properties or
safety-critical operating conditions. This paper proposes a novel data-driven
strategy using tree ensembles for constrained multi-objective optimization of
black-box problems with heterogeneous variable spaces for which underlying
system dynamics are either too complex to model or unknown. In an extensive
case study comprised of synthetic benchmarks and relevant energy applications
we demonstrate the competitive performance and sampling efficiency of the
proposed algorithm compared to other state-of-the-art tools, making it a useful
all-in-one solution for real-world applications with limited evaluation
budgets.
Related papers
- Smooth Tchebycheff Scalarization for Multi-Objective Optimization [15.047246588148495]
Multi-objective optimization problems can be found in many real-world applications, where the objectives often conflict each other and cannot be optimized by a single solution.
We propose a lightweight and efficient smooth Tchebycheff scalarization approach for gradient-based multi-objective optimization.
arXiv Detail & Related papers (2024-02-29T12:03:05Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Multiobjective variational quantum optimization for constrained
problems: an application to Cash Management [45.82374977939355]
We introduce a new method for solving optimization problems with challenging constraints using variational quantum algorithms.
We test our proposal on a real-world problem with great relevance in finance: the Cash Management problem.
Our empirical results show a significant improvement in terms of the cost of the achieved solutions, but especially in the avoidance of local minima.
arXiv Detail & Related papers (2023-02-08T17:09:20Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - A Study of Scalarisation Techniques for Multi-Objective QUBO Solving [0.0]
Quantum and quantum-inspired optimisation algorithms have shown promising performance when applied to academic benchmarks as well as real-world problems.
However, QUBO solvers are single objective solvers. To make them more efficient at solving problems with multiple objectives, a decision on how to convert such multi-objective problems to single-objective problems need to be made.
arXiv Detail & Related papers (2022-10-20T14:54:37Z) - Joint Entropy Search for Multi-objective Bayesian Optimization [0.0]
We propose a novel information-theoretic acquisition function for BO called Joint Entropy Search.
We showcase the effectiveness of this new approach on a range of synthetic and real-world problems in terms of the hypervolume and its weighted variants.
arXiv Detail & Related papers (2022-10-06T13:19:08Z) - Sparse Polynomial Optimization: Theory and Practice [5.27013884159732]
Book presents several efforts to tackle this challenge with important scientific implications.
It provides alternative optimization schemes that scale well in terms of computational complexity.
We present sparsity-exploiting hierarchies of relaxations, for either unconstrained or constrained problems.
arXiv Detail & Related papers (2022-08-23T18:56:05Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
We propose to reformulate the result diversification problem as a bi-objective search problem, and solve it by a multi-objective evolutionary algorithm (EA)
We theoretically prove that the GSEMO can achieve the optimal-time approximation ratio, $1/2$.
When the objective function changes dynamically, the GSEMO can maintain this approximation ratio in running time, addressing the open question proposed by Borodin et al.
arXiv Detail & Related papers (2021-10-18T14:00:22Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
Resource allocation and transceivers in wireless networks are usually designed by solving optimization problems.
In this article, we introduce unsupervised and reinforced-unsupervised learning frameworks for solving both variable and functional optimization problems.
arXiv Detail & Related papers (2020-01-03T11:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.