Smooth Tchebycheff Scalarization for Multi-Objective Optimization
- URL: http://arxiv.org/abs/2402.19078v3
- Date: Tue, 23 Jul 2024 10:46:28 GMT
- Title: Smooth Tchebycheff Scalarization for Multi-Objective Optimization
- Authors: Xi Lin, Xiaoyuan Zhang, Zhiyuan Yang, Fei Liu, Zhenkun Wang, Qingfu Zhang,
- Abstract summary: Multi-objective optimization problems can be found in many real-world applications, where the objectives often conflict each other and cannot be optimized by a single solution.
We propose a lightweight and efficient smooth Tchebycheff scalarization approach for gradient-based multi-objective optimization.
- Score: 15.047246588148495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-objective optimization problems can be found in many real-world applications, where the objectives often conflict each other and cannot be optimized by a single solution. In the past few decades, numerous methods have been proposed to find Pareto solutions that represent optimal trade-offs among the objectives for a given problem. However, these existing methods could have high computational complexity or may not have good theoretical properties for solving a general differentiable multi-objective optimization problem. In this work, by leveraging the smooth optimization technique, we propose a lightweight and efficient smooth Tchebycheff scalarization approach for gradient-based multi-objective optimization. It has good theoretical properties for finding all Pareto solutions with valid trade-off preferences, while enjoying significantly lower computational complexity compared to other methods. Experimental results on various real-world application problems fully demonstrate the effectiveness of our proposed method.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Few for Many: Tchebycheff Set Scalarization for Many-Objective Optimization [14.355588194787073]
Multi-objective optimization can be found in many real-world applications where some conflicting objectives can not be optimized by a single solution.
We propose a novel Tchebycheff set scalarization method to find a few representative solutions to cover a large number of objectives.
In this way, each objective can be well addressed by at least one solution in the small solution set.
arXiv Detail & Related papers (2024-05-30T03:04:57Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Learning Adaptive Evolutionary Computation for Solving Multi-Objective
Optimization Problems [3.3266268089678257]
This paper proposes a framework that integrates MOEAs with adaptive parameter control using Deep Reinforcement Learning (DRL)
The DRL policy is trained to adaptively set the values that dictate the intensity and probability of mutation for solutions during optimization.
We show the learned policy is transferable, i.e., the policy trained on a simple benchmark problem can be directly applied to solve the complex warehouse optimization problem.
arXiv Detail & Related papers (2022-11-01T22:08:34Z) - A Study of Scalarisation Techniques for Multi-Objective QUBO Solving [0.0]
Quantum and quantum-inspired optimisation algorithms have shown promising performance when applied to academic benchmarks as well as real-world problems.
However, QUBO solvers are single objective solvers. To make them more efficient at solving problems with multiple objectives, a decision on how to convert such multi-objective problems to single-objective problems need to be made.
arXiv Detail & Related papers (2022-10-20T14:54:37Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
Multiobjective optimization (MOCO) problems can be found in many real-world applications.
We develop a learning-based approach to approximate the whole Pareto set for a given MOCO problem without further search procedure.
Our proposed method significantly outperforms some other methods on the multiobjective traveling salesman problem, multiconditioned vehicle routing problem and multi knapsack problem in terms of solution quality, speed, and model efficiency.
arXiv Detail & Related papers (2022-03-29T09:26:22Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Follow the bisector: a simple method for multi-objective optimization [65.83318707752385]
We consider optimization problems, where multiple differentiable losses have to be minimized.
The presented method computes descent direction in every iteration to guarantee equal relative decrease of objective functions.
arXiv Detail & Related papers (2020-07-14T09:50:33Z) - A Decomposition-based Large-scale Multi-modal Multi-objective
Optimization Algorithm [9.584279193016522]
We propose an efficient multi-modal multi-objective optimization algorithm based on the widely used MOEA/D algorithm.
Experimental results show that our proposed algorithm can effectively preserve the diversity of solutions in the decision space.
arXiv Detail & Related papers (2020-04-21T09:18:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.