A Fitness-assignment Method for Evolutionary Constrained Multi-objective Optimization
- URL: http://arxiv.org/abs/2305.18734v2
- Date: Thu, 06 Feb 2025 04:41:05 GMT
- Title: A Fitness-assignment Method for Evolutionary Constrained Multi-objective Optimization
- Authors: Oladayo S. Ajani, Sri Srinivasa Raju M, Anand Paul, Rammohan Mallipeddi,
- Abstract summary: We propose an effective single-population fitness assignment-based CMOEA referred to as IcSDE+.<n>IcSDE+ is an efficient fusion of constraint violation (c), Shift-based Density Estimation (SDE), and sum of objectives (+)<n>The performance of IcSDE+ is favorably compared against 9 state-of-the-art CMOEAs on 6 different benchmark suites with diverse characteristics.
- Score: 5.757908778750608
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The effectiveness of Constrained Multi-Objective Evolutionary Algorithms (CMOEAs) depends on their ability to reach the different feasible regions during evolution, by exploiting the information present in infeasible solutions, in addition to optimizing the several conflicting objectives. Over the years, researchers have proposed several CMOEAs to handle Constrained Multi-objective Optimization Problems (CMOPs). However, most of the proposed CMOEAs with scalable performance are too complex because they are either multi-staged or multi-population-based algorithms. Consequently, to ensure the simplicity of CMOEAs, researchers have proposed different fitness-assignment-based CMOEAs by combining different fitness-assignment-based methods used to solve unconstrained multi-objective problems with information regarding the feasibility of each solution. The main performance drawback of such methods is that it is difficult to design a fitness assignment method that can account for constraint violation in addition to convergence and diversity. Hence in this paper, we propose an effective single-population fitness assignment-based CMOEA referred to as IcSDE+ that can explore different feasible regions in the search space. IcSDE+ is a fitness assignment-based algorithm, that is an efficient fusion of constraint violation (c), Shift-based Density Estimation (SDE), and sum of objectives (+). The performance of IcSDE+ is favorably compared against 9 state-of-the-art CMOEAs on 6 different benchmark suites with diverse characteristics.
Related papers
- Dynamic Detection of Relevant Objectives and Adaptation to Preference Drifts in Interactive Evolutionary Multi-Objective Optimization [2.4374097382908477]
We study the dynamic nature of DM preferences, which can evolve throughout the decision-making process and affect the relevance of objectives.
We propose methods to discard outdated or conflicting preferences when such shifts occur.
Our experimental results demonstrate that the proposed methods effectively manage evolving preferences and significantly enhance the quality and desirability of the solutions produced by the algorithm.
arXiv Detail & Related papers (2024-11-07T09:09:06Z) - Deep Pareto Reinforcement Learning for Multi-Objective Recommender Systems [60.91599969408029]
optimizing multiple objectives simultaneously is an important task for recommendation platforms.
Existing multi-objective recommender systems do not systematically consider such dynamic relationships.
arXiv Detail & Related papers (2024-07-04T02:19:49Z) - Maintaining Diversity Provably Helps in Evolutionary Multimodal Optimization [20.621635722585502]
We show that a simple method that considers diversity of solutions in the solution space can benefit the search in evolutionary algorithms (EAs)
We prove that the proposed method, working with crossover, can help enhance the exploration, leading to multimodal or even exponential acceleration on the expected running time.
arXiv Detail & Related papers (2024-06-04T17:52:14Z) - An Efficient Approach for Solving Expensive Constrained Multiobjective Optimization Problems [0.0]
An efficient probabilistic selection based constrained multi-objective EA is proposed, referred to as PSCMOEA.
It comprises novel elements such as (a) an adaptive search bound identification scheme based on the feasibility and convergence status of evaluated solutions.
Numerical experiments are conducted on an extensive range of challenging constrained problems using low evaluation budgets to simulate ECMOPs.
arXiv Detail & Related papers (2024-05-22T02:32:58Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - Controllable Preference Optimization: Toward Controllable Multi-Objective Alignment [103.12563033438715]
Alignment in artificial intelligence pursues consistency between model responses and human preferences as well as values.
Existing alignment techniques are mostly unidirectional, leading to suboptimal trade-offs and poor flexibility over various objectives.
We introduce controllable preference optimization (CPO), which explicitly specifies preference scores for different objectives.
arXiv Detail & Related papers (2024-02-29T12:12:30Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Alleviating Search Bias in Bayesian Evolutionary Optimization with Many
Heterogeneous Objectives [9.139734850798124]
We deal with multi-objective optimization problems with heterogeneous objectives (HE-MOPs)
A new acquisition function that mitigates search bias towards the fast objectives is suggested.
We demonstrate the effectiveness of the proposed algorithm by testing it on widely used multi-/many-objective benchmark problems.
arXiv Detail & Related papers (2022-08-25T17:07:40Z) - Interactive Evolutionary Multi-Objective Optimization via
Learning-to-Rank [8.421614560290609]
This paper develops a framework for designing preference-based EMO algorithms to find solution(s) of interest (SOI) in an interactive manner.
Its core idea is to involve human in the loop of EMO. After every several iterations, the DM is invited to elicit her feedback with regard to a couple of incumbent candidates.
By collecting such information, her preference is progressively learned by a learning-to-rank neural network and then applied to guide the baseline EMO algorithm.
arXiv Detail & Related papers (2022-04-06T06:34:05Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
Multiobjective optimization (MOCO) problems can be found in many real-world applications.
We develop a learning-based approach to approximate the whole Pareto set for a given MOCO problem without further search procedure.
Our proposed method significantly outperforms some other methods on the multiobjective traveling salesman problem, multiconditioned vehicle routing problem and multi knapsack problem in terms of solution quality, speed, and model efficiency.
arXiv Detail & Related papers (2022-03-29T09:26:22Z) - An Instance Space Analysis of Constrained Multi-Objective Optimization
Problems [1.314903445595385]
We explore the relationship between constrained multi-objective evolutionary algorithms (CMOEAs) performance and CMOP instances characteristics using Instance Space Analysis (ISA)
Detailed evaluation of problem-algorithm footprints spanning six CMOP benchmark suites and fifteen CMOEAs is presented.
We conclude that two key characteristics, the isolation of non-dominate set and the correlation between constraints and objectives evolvability, have the greatest impact on algorithm performance.
arXiv Detail & Related papers (2022-03-02T04:28:11Z) - Multi-Objective Constrained Optimization for Energy Applications via
Tree Ensembles [55.23285485923913]
Energy systems optimization problems are complex due to strongly non-linear system behavior and multiple competing objectives.
In some cases, proposed optimal solutions need to obey explicit input constraints related to physical properties or safety-critical operating conditions.
This paper proposes a novel data-driven strategy using tree ensembles for constrained multi-objective optimization of black-box problems.
arXiv Detail & Related papers (2021-11-04T20:18:55Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
We propose to reformulate the result diversification problem as a bi-objective search problem, and solve it by a multi-objective evolutionary algorithm (EA)
We theoretically prove that the GSEMO can achieve the optimal-time approximation ratio, $1/2$.
When the objective function changes dynamically, the GSEMO can maintain this approximation ratio in running time, addressing the open question proposed by Borodin et al.
arXiv Detail & Related papers (2021-10-18T14:00:22Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z) - Learning What to Defer for Maximum Independent Sets [84.00112106334655]
We propose a novel DRL scheme, coined learning what to defer (LwD), where the agent adaptively shrinks or stretch the number of stages by learning to distribute the element-wise decisions of the solution at each stage.
We apply the proposed framework to the maximum independent set (MIS) problem, and demonstrate its significant improvement over the current state-of-the-art DRL scheme.
arXiv Detail & Related papers (2020-06-17T02:19:31Z) - Hybrid Adaptive Evolutionary Algorithm for Multi-objective Optimization [0.0]
This paper proposed a new Multi-objective Algorithm as an extension of the Hybrid Adaptive Evolutionary algorithm (HAEA) called MoHAEA.
MoHAEA is compared with four states of the art MOEAs, namely MOEA/D, pa$lambda$-MOEA/D, MOEA/D-AWA, and NSGA-II.
arXiv Detail & Related papers (2020-04-29T02:16:49Z) - An Eigenspace Divide-and-Conquer Approach for Large-Scale Optimization [9.501723707464432]
Divide-and-conquer (DC) evolutionary algorithms have achieved notable success in dealing with large-scale optimization problems.
This study proposes an eigenspace divide-and-conquer (EDC) approach.
arXiv Detail & Related papers (2020-04-05T07:29:44Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
We present a modified Cross-Entropy Method (CEM) that uses a masked auto-regressive neural network for modeling uniform distributions over the solution space.
Our algorithm is able to express complicated solution spaces, thus allowing it to track a variety of different solution regions.
arXiv Detail & Related papers (2020-02-17T20:21:20Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
We introduce an unsupervised domain adaptation approach for person re-identification.
Experimental results show that the proposed ktCUDA and SHRED approach achieves an average improvement of +5.7 mAP in re-identification performance.
arXiv Detail & Related papers (2020-01-14T17:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.