論文の概要: MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms
- arxiv url: http://arxiv.org/abs/2111.03187v1
- Date: Thu, 4 Nov 2021 22:38:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-09 02:10:42.794909
- Title: MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms
- Title(参考訳): MIRACLE: ミスデータメカニズムの学習による因果認識型インプット
- Authors: Trent Kyono, Yao Zhang, Alexis Bellot, Mihaela van der Schaar
- Abstract要約: 欠落データに対する因果認識型計算アルゴリズム(MIRACLE)を提案する。
MIRACLEは、欠落発生機構を同時にモデル化することにより、ベースラインの計算を反復的に洗練する。
我々は、MIRACLEが一貫してイミューテーションを改善することができることを示すために、合成および様々な公開データセットに関する広範な実験を行う。
- 参考スコア(独自算出の注目度): 82.90843777097606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Missing data is an important problem in machine learning practice. Starting
from the premise that imputation methods should preserve the causal structure
of the data, we develop a regularization scheme that encourages any baseline
imputation method to be causally consistent with the underlying data generating
mechanism. Our proposal is a causally-aware imputation algorithm (MIRACLE).
MIRACLE iteratively refines the imputation of a baseline by simultaneously
modeling the missingness generating mechanism, encouraging imputation to be
consistent with the causal structure of the data. We conduct extensive
experiments on synthetic and a variety of publicly available datasets to show
that MIRACLE is able to consistently improve imputation over a variety of
benchmark methods across all three missingness scenarios: at random, completely
at random, and not at random.
- Abstract(参考訳): データの欠如は、機械学習の実践において重要な問題である。
インプテーション法がデータの因果構造を保存すべきという前提から始め、基礎となるインプテーション法が基礎となるデータ生成機構と因果的に整合することを推奨する正規化スキームを開発する。
我々の提案は因果認識型計算アルゴリズム (MIRACLE) である。
MIRACLEは、欠落発生機構を同時にモデル化し、データの因果構造に整合するように促すことにより、ベースラインの計算を反復的に洗練する。
我々は、MIRACLEが3つの欠落シナリオ(ランダム、完全にランダム、ランダムではない)すべてにわたって、様々なベンチマークメソッドに対して一貫して命令を改善可能であることを示すために、合成および様々な公開データセットに関する広範な実験を行った。
関連論文リスト
- Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
根本原因局所化のためのマルチモーダル因果構造学習手法であるMulanを提案する。
ログ選択言語モデルを利用してログ表現学習を行い、ログシーケンスを時系列データに変換する。
また、モダリティの信頼性を評価し、最終因果グラフを共同学習するための新しいキーパフォーマンスインジケータ対応アテンション機構も導入する。
論文 参考訳(メタデータ) (2024-02-04T05:50:38Z) - Machine Learning Based Missing Values Imputation in Categorical Datasets [2.5611256859404983]
この研究では、分類データセットのギャップを埋めるための機械学習アルゴリズムの使用について検討した。
Error Correction Output Codesフレームワークを使用して構築されたアンサンブルモデルに重点が置かれた。
大量のラベル付きデータの要求を含む、これらの奨励的な結果にもかかわらず、データ計算の欠如に対する深い学習には障害がある。
論文 参考訳(メタデータ) (2023-06-10T03:29:48Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - RandomSCM: interpretable ensembles of sparse classifiers tailored for
omics data [59.4141628321618]
決定規則の結合や解離に基づくアンサンブル学習アルゴリズムを提案する。
モデルの解釈可能性により、高次元データのバイオマーカー発見やパターン発見に有用である。
論文 参考訳(メタデータ) (2022-08-11T13:55:04Z) - MissDAG: Causal Discovery in the Presence of Missing Data with
Continuous Additive Noise Models [78.72682320019737]
不完全な観測データから因果発見を行うため,MissDAGと呼ばれる一般的な手法を開発した。
MissDAGは、期待-最大化の枠組みの下で観測の可視部分の期待される可能性を最大化する。
各種因果探索アルゴリズムを組み込んだMissDAGの柔軟性について,広範囲なシミュレーションと実データ実験により検証した。
論文 参考訳(メタデータ) (2022-05-27T09:59:46Z) - Multiple Imputation via Generative Adversarial Network for
High-dimensional Blockwise Missing Value Problems [6.123324869194195]
本稿では,GAN(Generative Adversarial Network)による多重インプットを提案する。
MI-GANは、高次元データセット上で既存の最先端計算手法と高い性能を示す。
特に、MI-GANは統計的推測と計算速度の点で他の計算方法よりも優れている。
論文 参考訳(メタデータ) (2021-12-21T20:19:37Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
因果構造学習への現在のアプローチは、既知の介入目標を扱うか、仮説テストを使用して未知の介入目標を発見する。
本稿では、全ての介入対象を一貫して識別するスケーラブルで効率的なアルゴリズムを提案する。
提案アルゴリズムは、与えられた観測マルコフ同値クラスを介入マルコフ同値クラスに更新することも可能である。
論文 参考訳(メタデータ) (2021-11-15T03:16:56Z) - Multiple Imputation with Denoising Autoencoder using Metamorphic Truth
and Imputation Feedback [0.0]
データの内部表現を学習するために,Denoising Autoencoder を用いた多重命令モデルを提案する。
我々は、属性の統計的整合性を維持するために、変成真理と帰納フィードバックの新たなメカニズムを用いる。
提案手法は,多くの標準的なテストケースにおいて,様々な欠落メカニズムや欠落したデータのパターンに対するインパルスの効果を検証し,他の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-02-19T18:26:59Z) - Causal Discovery from Incomplete Data: A Deep Learning Approach [21.289342482087267]
因果構造探索と因果構造探索を反復的に行うために, 因果学習を提案する。
ICLは、異なるデータメカニズムで最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-01-15T14:28:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。