論文の概要: Multiple Imputation via Generative Adversarial Network for
High-dimensional Blockwise Missing Value Problems
- arxiv url: http://arxiv.org/abs/2112.11507v1
- Date: Tue, 21 Dec 2021 20:19:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-23 16:03:48.370821
- Title: Multiple Imputation via Generative Adversarial Network for
High-dimensional Blockwise Missing Value Problems
- Title(参考訳): 高次元ブロックワイズ値問題に対する生成逆ネットワークによる多重インプテーション
- Authors: Zongyu Dai, Zhiqi Bu, Qi Long
- Abstract要約: 本稿では,GAN(Generative Adversarial Network)による多重インプットを提案する。
MI-GANは、高次元データセット上で既存の最先端計算手法と高い性能を示す。
特に、MI-GANは統計的推測と計算速度の点で他の計算方法よりも優れている。
- 参考スコア(独自算出の注目度): 6.123324869194195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Missing data are present in most real world problems and need careful
handling to preserve the prediction accuracy and statistical consistency in the
downstream analysis. As the gold standard of handling missing data, multiple
imputation (MI) methods are proposed to account for the imputation uncertainty
and provide proper statistical inference.
In this work, we propose Multiple Imputation via Generative Adversarial
Network (MI-GAN), a deep learning-based (in specific, a GAN-based) multiple
imputation method, that can work under missing at random (MAR) mechanism with
theoretical support. MI-GAN leverages recent progress in conditional generative
adversarial neural works and shows strong performance matching existing
state-of-the-art imputation methods on high-dimensional datasets, in terms of
imputation error. In particular, MI-GAN significantly outperforms other
imputation methods in the sense of statistical inference and computational
speed.
- Abstract(参考訳): 不足したデータは現実世界のほとんどの問題に存在し、下流解析の予測精度と統計的一貫性を保つために注意深く処理する必要がある。
欠落したデータを扱うための金の標準として、多重計算法(MI)が提案され、その不確実性を考慮し、適切な統計的推測を提供する。
本研究では,ランダム(mar)機構を理論的にサポートして動作し得る,深層学習に基づく(具体的にはganに基づく)多重インプテーション手法mi-gan(generative adversarial network)による複数インプテーションを提案する。
MI-GANは、条件付き生成対向ニューラルワークの最近の進歩を生かし、高次元データセット上で既存の最先端の計算手法と高い性能で一致していることを示す。
特に、MI-GANは統計的推測と計算速度の点で他の計算方法よりも優れている。
関連論文リスト
- Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning [50.84938730450622]
数理推論におけるOOD検出にトラジェクトリボラティリティを用いたトラジェクトリベースのTVスコアを提案する。
本手法は, 数学的推論シナリオ下でのGLM上での従来のアルゴリズムよりも優れる。
提案手法は,複数選択質問などの出力空間における高密度特徴を持つアプリケーションに拡張することができる。
論文 参考訳(メタデータ) (2024-05-22T22:22:25Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
量子回帰に基づくタスクネットワークのアンサンブルを用いて不確実性を推定する新しい手法であるQuantile Sub-Ensemblesを提案する。
提案手法は,高い損失率に頑健な高精度な計算法を生成するだけでなく,非生成モデルの高速な学習により,計算効率も向上する。
論文 参考訳(メタデータ) (2023-12-03T05:52:30Z) - MISNN: Multiple Imputation via Semi-parametric Neural Networks [9.594714330925703]
バイオメディカル・ソーシャル・エコノメトリー研究において、多重計算(Multiple Imputation, MI)は、欠落した価値問題に広く応用されている。
提案するMISNNは,MIの特徴選択を取り入れた,新規で効率的なアルゴリズムである。
論文 参考訳(メタデータ) (2023-05-02T21:45:36Z) - Multiple Imputation with Neural Network Gaussian Process for
High-dimensional Incomplete Data [9.50726756006467]
既存のメソッドにはいくつかの制限があるが、Imputationはおそらく欠落データを扱う最も一般的な方法である。
2つのNNGPに基づくMI手法、すなわちMI-NNGPを提案する。
MI-NNGP法は, 合成および実データに対して, 既存の最先端手法を著しく上回ることを示す。
論文 参考訳(メタデータ) (2022-11-23T20:54:26Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
欠落データに対する因果認識型計算アルゴリズム(MIRACLE)を提案する。
MIRACLEは、欠落発生機構を同時にモデル化することにより、ベースラインの計算を反復的に洗練する。
我々は、MIRACLEが一貫してイミューテーションを改善することができることを示すために、合成および様々な公開データセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2021-11-04T22:38:18Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
脳磁図(MEG)や脳電図(EEG)のような非侵襲的手法は、非侵襲的手法を約束する。
ソースローカライゼーション(ソースイメージング)の問題は、しかしながら、高次元の統計的推測問題を引き起こす。
この問題に対処するために,分離されたマルチタスクラッソ(ecd-MTLasso)のアンサンブルを提案する。
論文 参考訳(メタデータ) (2020-09-29T21:17:16Z) - NeuMiss networks: differentiable programming for supervised learning
with missing values [0.0]
線形性仮定の下で最適予測器の解析形式を導出する。
我々はNeuMissネットワークという新しい原則アーキテクチャを提案する。
パラメータの数と、欠落したデータパターンの数に依存しない計算複雑性の両方で、予測精度が良い。
論文 参考訳(メタデータ) (2020-07-03T11:42:25Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。