S-multi-SNE: Semi-Supervised Classification and Visualisation of
Multi-View Data
- URL: http://arxiv.org/abs/2111.03519v1
- Date: Fri, 5 Nov 2021 14:19:28 GMT
- Title: S-multi-SNE: Semi-Supervised Classification and Visualisation of
Multi-View Data
- Authors: Theodoulos Rodosthenous and Vahid Shahrezaei and Marina Evangelou
- Abstract summary: Multi-view data corresponds to multiple data-views, each representing a different aspect of the same set of samples.
We have recently proposed multi-SNE, an extension of t-SNE, that produces a single visualisation of multi-view data.
Here, we extend multi-SNE to a semi-supervised approach, that classifies unlabelled samples by regarding the labelling information as an extra data-view.
- Score: 0.03222802562733786
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: An increasing number of multi-view data are being published by studies in
several fields. This type of data corresponds to multiple data-views, each
representing a different aspect of the same set of samples. We have recently
proposed multi-SNE, an extension of t-SNE, that produces a single visualisation
of multi-view data. The multi-SNE approach provides low-dimensional embeddings
of the samples, produced by being updated iteratively through the different
data-views. Here, we further extend multi-SNE to a semi-supervised approach,
that classifies unlabelled samples by regarding the labelling information as an
extra data-view. We look deeper into the performance, limitations and strengths
of multi-SNE and its extension, S-multi-SNE, by applying the two methods on
various multi-view datasets with different challenges. We show that by
including the labelling information, the projection of the samples improves
drastically and it is accompanied by a strong classification performance.
Related papers
- Uni$^2$Det: Unified and Universal Framework for Prompt-Guided Multi-dataset 3D Detection [64.08296187555095]
Uni$2$Det is a framework for unified and universal multi-dataset training on 3D detection.
We introduce multi-stage prompting modules for multi-dataset 3D detection.
Results on zero-shot cross-dataset transfer validate the generalization capability of our proposed method.
arXiv Detail & Related papers (2024-09-30T17:57:50Z) - GCFAgg: Global and Cross-view Feature Aggregation for Multi-view
Clustering [45.530950521907265]
Multi-view clustering can partition data samples into their categories by learning a consensus representation in unsupervised way.
We propose a novel multi-view clustering network to address these problems, called Global and Cross-view Feature aggregation for Multi-View Clustering (GggMVC)
We show that the proposed method achieves excellent performance in both complete multi-view data clustering tasks and incomplete multi-view data clustering tasks.
arXiv Detail & Related papers (2023-05-11T13:41:13Z) - Reliable Representations Learning for Incomplete Multi-View Partial Multi-Label Classification [78.15629210659516]
In this paper, we propose an incomplete multi-view partial multi-label classification network named RANK.
We break through the view-level weights inherent in existing methods and propose a quality-aware sub-network to dynamically assign quality scores to each view of each sample.
Our model is not only able to handle complete multi-view multi-label datasets, but also works on datasets with missing instances and labels.
arXiv Detail & Related papers (2023-03-30T03:09:25Z) - Deep Incomplete Multi-view Clustering with Cross-view Partial Sample and
Prototype Alignment [50.82982601256481]
We propose a Cross-view Partial Sample and Prototype Alignment Network (CPSPAN) for Deep Incomplete Multi-view Clustering.
Unlike existing contrastive-based methods, we adopt pair-observed data alignment as 'proxy supervised signals' to guide instance-to-instance correspondence construction.
arXiv Detail & Related papers (2023-03-28T02:31:57Z) - Align and Attend: Multimodal Summarization with Dual Contrastive Losses [57.83012574678091]
The goal of multimodal summarization is to extract the most important information from different modalities to form output summaries.
Existing methods fail to leverage the temporal correspondence between different modalities and ignore the intrinsic correlation between different samples.
We introduce Align and Attend Multimodal Summarization (A2Summ), a unified multimodal transformer-based model which can effectively align and attend the multimodal input.
arXiv Detail & Related papers (2023-03-13T17:01:42Z) - Cross-view Graph Contrastive Representation Learning on Partially
Aligned Multi-view Data [52.491074276133325]
Multi-view representation learning has developed rapidly over the past decades and has been applied in many fields.
We propose a new cross-view graph contrastive learning framework, which integrates multi-view information to align data and learn latent representations.
Experiments conducted on several real datasets demonstrate the effectiveness of the proposed method on the clustering and classification tasks.
arXiv Detail & Related papers (2022-11-08T09:19:32Z) - TSK Fuzzy System Towards Few Labeled Incomplete Multi-View Data
Classification [24.01191516774655]
A transductive semi-supervised incomplete multi-view TSK fuzzy system modeling method (SSIMV_TSK) is proposed to address these challenges.
The proposed method integrates missing view imputation, pseudo label learning of unlabeled data, and fuzzy system modeling into a single process to yield a model with interpretable fuzzy rules.
Experimental results on real datasets show that the proposed method significantly outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2021-10-08T11:41:06Z) - Multi-view Data Visualisation via Manifold Learning [0.03222802562733786]
This manuscript proposes extensions of Student's t-distributed SNE, LLE and ISOMAP, to allow for dimensionality reduction and visualisation of multi-view data.
We show that by incorporating the low-dimensional embeddings obtained via the multi-view manifold learning approaches into the K-means algorithm, clusters of the samples are accurately identified.
arXiv Detail & Related papers (2021-01-17T19:54:36Z) - Learning Inter- and Intra-manifolds for Matrix Factorization-based
Multi-Aspect Data Clustering [3.756550107432323]
Clustering on the data with multiple aspects, such as multi-view or multi-type relational data, has become popular in recent years.
We propose to include the inter-manifold in the NMF framework, utilizing the distance information of data points of different data types (or views) to learn the diverse manifold for data clustering.
Results on several datasets demonstrate that the proposed method outperforms the state-of-the-art multi-aspect data clustering methods in both accuracy and efficiency.
arXiv Detail & Related papers (2020-09-07T02:21:08Z) - Generative Partial Multi-View Clustering [133.36721417531734]
We propose a generative partial multi-view clustering model, named as GP-MVC, to address the incomplete multi-view problem.
First, multi-view encoder networks are trained to learn common low-dimensional representations, followed by a clustering layer to capture the consistent cluster structure across multiple views.
Second, view-specific generative adversarial networks are developed to generate the missing data of one view conditioning on the shared representation given by other views.
arXiv Detail & Related papers (2020-03-29T17:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.