論文の概要: Leveraging Sentiment Analysis Knowledge to Solve Emotion Detection Tasks
- arxiv url: http://arxiv.org/abs/2111.03715v1
- Date: Fri, 5 Nov 2021 20:06:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-11 06:14:33.585247
- Title: Leveraging Sentiment Analysis Knowledge to Solve Emotion Detection Tasks
- Title(参考訳): 感情検出課題解決のための知覚分析知識の活用
- Authors: Maude Nguyen-The, Guillaume-Alexandre Bilodeau and Jan Rockemann
- Abstract要約: 本稿では,大規模データセット上での感情検出タスクを改善するために,適応層を融合したトランスフォーマーモデルを提案する。
また,CMU-MOSEIの感情認識には,テキストモダリティのみを用いながら,最先端の結果が得られた。
- 参考スコア(独自算出の注目度): 11.928873764689458
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Identifying and understanding underlying sentiment or emotions in text is a
key component of multiple natural language processing applications. While
simple polarity sentiment analysis is a well-studied subject, fewer advances
have been made in identifying more complex, finer-grained emotions using only
textual data. In this paper, we present a Transformer-based model with a Fusion
of Adapter layers which leverages knowledge from more simple sentiment analysis
tasks to improve the emotion detection task on large scale dataset, such as
CMU-MOSEI, using the textual modality only. Results show that our proposed
method is competitive with other approaches. We obtained state-of-the-art
results for emotion recognition on CMU-MOSEI even while using only the textual
modality.
- Abstract(参考訳): テキスト中の感情や感情を識別し理解することは、複数の自然言語処理アプリケーションにおいて重要なコンポーネントである。
単純な極性感情分析はよく研究されている対象であるが、テキストデータのみを用いてより複雑できめ細かい感情を特定するための進歩は少ない。
本稿では,CMU-MOSEIのような大規模データセットにおける感情検出タスクを改善するために,より単純な感情分析タスクからの知識を活用し,適応層を融合したトランスフォーマーモデルを提案する。
提案手法は他の手法と競合することを示す。
CMU-MOSEIの感情認識には,テキストのモダリティのみを用いながら,現状の成果を得た。
関連論文リスト
- Large Language Models Meet Text-Centric Multimodal Sentiment Analysis: A Survey [66.166184609616]
ChatGPTは、テキスト中心のマルチモーダルタスクに大規模言語モデル(LLM)を適用する大きな可能性を開く。
既存のLLMがテキスト中心のマルチモーダル感情分析タスクにどのように適応できるかは、まだ不明である。
論文 参考訳(メタデータ) (2024-06-12T10:36:27Z) - Self-supervised Gait-based Emotion Representation Learning from Selective Strongly Augmented Skeleton Sequences [4.740624855896404]
自己教師型歩行に基づく感情表現のための選択的強強化を利用したコントラスト学習フレームワークを提案する。
提案手法はEmotion-Gait (E-Gait) と Emilya のデータセットで検証され, 異なる評価プロトコル下での最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-05-08T09:13:10Z) - Two in One Go: Single-stage Emotion Recognition with Decoupled Subject-context Transformer [78.35816158511523]
単段階の感情認識手法として,DSCT(Decoupled Subject-Context Transformer)を用いる。
広範に使われている文脈認識型感情認識データセットであるCAER-SとEMOTICの単段階フレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-04-26T07:30:32Z) - VLLMs Provide Better Context for Emotion Understanding Through Common Sense Reasoning [66.23296689828152]
我々は、視覚・言語モデルの機能を活用し、文脈内感情分類を強化する。
第1段階では、VLLMが対象者の明らかな感情の自然言語で記述を生成できるように促すことを提案する。
第2段階では、記述を文脈情報として使用し、画像入力とともに、トランスフォーマーベースのアーキテクチャのトレーニングに使用する。
論文 参考訳(メタデータ) (2024-04-10T15:09:15Z) - Implementation of AI Deep Learning Algorithm For Multi-Modal Sentiment
Analysis [0.9065034043031668]
2チャンネル畳み込みニューラルネットワークとリングネットワークを組み合わせることで,マルチモーダル感情認識手法を確立した。
単語はGloVeでベクトル化され、ワードベクトルは畳み込みニューラルネットワークに入力される。
論文 参考訳(メタデータ) (2023-11-19T05:49:39Z) - An Empirical Study and Improvement for Speech Emotion Recognition [22.250228893114066]
マルチモーダル音声の感情認識は、音声とテキストから話者の感情を検出することを目的としている。
本研究では、音声とテキストのモダリティ情報を融合する方法という、シンプルながら重要な問題について考察する。
実験により,本手法はIEMOCAPデータセット上で得られた新しい最先端結果を示す。
論文 参考訳(メタデータ) (2023-04-08T03:24:06Z) - REDAffectiveLM: Leveraging Affect Enriched Embedding and
Transformer-based Neural Language Model for Readers' Emotion Detection [3.6678641723285446]
本稿では,REDAffectiveLMと呼ばれる深層学習モデルを用いて,短文文書からの読み手感情検出のための新しい手法を提案する。
コンテクストに特化してリッチ表現に影響を与え, リッチBi-LSTM+Attentionに影響を及ぼすタンデムにおいて, トランスフォーマーに基づく事前学習言語モデルを用いることで, リッチ表現に影響を及ぼす。
論文 参考訳(メタデータ) (2023-01-21T19:28:25Z) - Holistic Visual-Textual Sentiment Analysis with Prior Models [64.48229009396186]
本稿では,頑健な視覚・テキスト感情分析を実現するための総合的手法を提案する。
提案手法は,(1)感情分析のためのデータから特徴を直接学習する視覚テキストブランチ,(2)選択された意味的特徴を抽出する事前学習された「専門家」エンコーダを備えた視覚専門家ブランチ,(3)暗黙的に視覚テキスト対応をモデル化するCLIPブランチ,(4)多モード特徴を融合して感情予測を行うBERTに基づくマルチモーダル特徴融合ネットワークの4つの部分から構成される。
論文 参考訳(メタデータ) (2022-11-23T14:40:51Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
本稿では,音声とテキストのモダリティから,伝達学習モデルと微調整モデルとを融合したニューラルネットワークによる感情認識フレームワークを提案する。
本稿では,対話型感情的モーションキャプチャー・データセットにおけるマルチモーダル・アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2022-02-16T00:23:42Z) - EmoDNN: Understanding emotions from short texts through a deep neural
network ensemble [2.459874436804819]
本稿では,短い内容から潜伏した個々の側面を推定する枠組みを提案する。
また,テキストコンテキストから感情を抽出する動的ドロップアウト共振器を備えた新しいアンサンブル分類器を提案する。
提案モデルでは,ノイズのある内容から感情を認識する上で,高い性能を実現することができる。
論文 参考訳(メタデータ) (2021-06-03T09:17:34Z) - A Deep Neural Framework for Contextual Affect Detection [51.378225388679425]
感情を持たない短い単純なテキストは、その文脈と共に読むときに強い感情を表現することができる。
文中の単語の相互依存を学習する文脈影響検出フレームワークを提案する。
論文 参考訳(メタデータ) (2020-01-28T05:03:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。