論文の概要: Bridging Cognition and Emotion: Empathy-Driven Multimodal Misinformation Detection
- arxiv url: http://arxiv.org/abs/2504.17332v1
- Date: Thu, 24 Apr 2025 07:48:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.286353
- Title: Bridging Cognition and Emotion: Empathy-Driven Multimodal Misinformation Detection
- Title(参考訳): ブリッジング認知と感情:共感駆動型マルチモーダル誤報検出
- Authors: Zihan Wang, Lu Yuan, Zhengxuan Zhang, Qing Zhao,
- Abstract要約: ソーシャルメディアは情報発信の主流となっているが、誤報の急速な拡散を助長している。
従来の誤報検出法は主に表面的な特徴に焦点を合わせ、伝播過程における人間の共感の重要な役割を見落としている。
著者と読者の両方の視点から誤情報を分析するために、認知的・感情的共感を統合したデュアル・アスペクト・共感フレームワーク(DAE)を提案する。
- 参考スコア(独自算出の注目度): 56.644686934050576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the digital era, social media has become a major conduit for information dissemination, yet it also facilitates the rapid spread of misinformation. Traditional misinformation detection methods primarily focus on surface-level features, overlooking the crucial roles of human empathy in the propagation process. To address this gap, we propose the Dual-Aspect Empathy Framework (DAE), which integrates cognitive and emotional empathy to analyze misinformation from both the creator and reader perspectives. By examining creators' cognitive strategies and emotional appeals, as well as simulating readers' cognitive judgments and emotional responses using Large Language Models (LLMs), DAE offers a more comprehensive and human-centric approach to misinformation detection. Moreover, we further introduce an empathy-aware filtering mechanism to enhance response authenticity and diversity. Experimental results on benchmark datasets demonstrate that DAE outperforms existing methods, providing a novel paradigm for multimodal misinformation detection.
- Abstract(参考訳): デジタル時代には、ソーシャルメディアは情報発信の主流となっているが、情報拡散の迅速化にも寄与している。
従来の誤報検出法は主に表面的な特徴に焦点を合わせ、伝播過程における人間の共感の重要な役割を見落としている。
このギャップに対処するために、認知的・感情的共感を統合し、作者と読者の両方の視点から誤情報を分析するDual-Aspect Empathy Framework (DAE)を提案する。
クリエーターの認知戦略と感情的魅力を調べ、Large Language Models (LLMs) を用いて読者の認知判断と感情的反応をシミュレートすることで、DAEは誤情報検出に対するより包括的で人間中心のアプローチを提供する。
さらに,応答の信頼性と多様性を高めるために共感型フィルタリング機構を導入する。
ベンチマークデータセットによる実験結果から,DAEは既存の手法よりも優れており,マルチモーダルな誤情報検出のための新しいパラダイムを提供する。
関連論文リスト
- Dynamic Analysis and Adaptive Discriminator for Fake News Detection [59.41431561403343]
偽ニュース検出のための動的解析・適応識別器(DAAD)手法を提案する。
知識に基づく手法では,モンテカルロ木探索アルゴリズムを導入し,大規模言語モデルの自己表現能力を活用する。
意味に基づく手法では、偽ニュース生成のメカニズムを明らかにするために、典型的偽造パターンを4つ定義する。
論文 参考訳(メタデータ) (2024-08-20T14:13:54Z) - Multi-modal Mood Reader: Pre-trained Model Empowers Cross-Subject Emotion Recognition [23.505616142198487]
我々は、クロスオブジェクト感情認識のための訓練済みモデルに基づくMultimodal Mood Readerを開発した。
このモデルは、大規模データセットの事前学習を通じて、脳波信号の普遍的な潜在表現を学習する。
公開データセットに関する大規模な実験は、クロスオブジェクト感情認識タスクにおけるMood Readerの優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-05-28T14:31:11Z) - Deep Imbalanced Learning for Multimodal Emotion Recognition in
Conversations [15.705757672984662]
会話におけるマルチモーダル感情認識(MERC)は、マシンインテリジェンスにとって重要な開発方向である。
MERCのデータの多くは自然に感情カテゴリーの不均衡な分布を示しており、研究者は感情認識に対する不均衡なデータの負の影響を無視している。
生データにおける感情カテゴリーの不均衡分布に対処するクラス境界拡張表現学習(CBERL)モデルを提案する。
我々は,IEMOCAPおよびMELDベンチマークデータセットの広範な実験を行い,CBERLが感情認識の有効性において一定の性能向上を達成したことを示す。
論文 参考訳(メタデータ) (2023-12-11T12:35:17Z) - Empathetic Conversational Systems: A Review of Current Advances, Gaps,
and Opportunities [2.741266294612776]
多くの研究が共感の利点を認識し、共感を会話システムに取り入れ始めた。
本稿では,5つのレビュー次元を用いて,急速に成長するこの分野について検討する。
論文 参考訳(メタデータ) (2022-05-09T05:19:48Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
本稿では,音声とテキストのモダリティから,伝達学習モデルと微調整モデルとを融合したニューラルネットワークによる感情認識フレームワークを提案する。
本稿では,対話型感情的モーションキャプチャー・データセットにおけるマルチモーダル・アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2022-02-16T00:23:42Z) - CEM: Commonsense-aware Empathetic Response Generation [31.956147246779423]
本稿では,ユーザ状況に関する情報を引き出すために,コモンセンスを利用した共感応答生成手法を提案する。
我々は,共感的応答生成のためのベンチマークデータセットである共感的ダイアログに対するアプローチを評価した。
論文 参考訳(メタデータ) (2021-09-13T06:55:14Z) - Stimuli-Aware Visual Emotion Analysis [75.68305830514007]
本稿では,刺激選択,特徴抽出,感情予測の3段階からなる刺激認識型視覚感情分析(VEA)手法を提案する。
我々の知る限りでは、エンド・ツー・エンドのネットワークでVEAに刺激選択プロセスを導入するのは初めてです。
実験により、提案手法は、4つの公的な視覚的感情データセットに対する最先端のアプローチよりも一貫して優れていることが示された。
論文 参考訳(メタデータ) (2021-09-04T08:14:52Z) - Target Guided Emotion Aware Chat Machine [58.8346820846765]
意味レベルと感情レベルにおける投稿に対する応答の整合性は、人間のような対話を提供する対話システムにとって不可欠である。
この記事では、投稿中のセマンティクスと感情を同時にエンコードできる、未定義のエンドツーエンドニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-11-15T01:55:37Z) - Temporal aggregation of audio-visual modalities for emotion recognition [0.5352699766206808]
本研究では,時間的オフセットの異なる時間的オフセットと時間的ウィンドウからの音声・視覚的モダリティを組み合わせた感情認識のためのマルチモーダル融合手法を提案する。
提案手法は,文献と人間の精度評価から,他の手法よりも優れている。
論文 参考訳(メタデータ) (2020-07-08T18:44:15Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。