論文の概要: Generation of microbial colonies dataset with deep learning style
transfer
- arxiv url: http://arxiv.org/abs/2111.03789v1
- Date: Sat, 6 Nov 2021 03:11:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-09 14:56:59.450656
- Title: Generation of microbial colonies dataset with deep learning style
transfer
- Title(参考訳): 深層学習を用いた微生物コロニーデータセットの作成
- Authors: Jaros{\l}aw Paw{\l}owski, Sylwia Majchrowska, and Tomasz Golan
- Abstract要約: 深層学習モデルの学習に使用できるペトリ料理の微生物学的画像の合成データセットを作成するための戦略を導入する。
本手法は, 5種類の微生物の局在, セグメンテーション, 分類が可能なニューラルネットワークモデルのトレーニングに使用できる, リアルな画像のデータセットを合成できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce an effective strategy to generate a synthetic dataset of
microbiological images of Petri dishes that can be used to train deep learning
models. The developed generator employs traditional computer vision algorithms
together with a neural style transfer method for data augmentation. We show
that the method is able to synthesize a dataset of realistic looking images
that can be used to train a neural network model capable of localising,
segmenting, and classifying five different microbial species. Our method
requires significantly fewer resources to obtain a useful dataset than
collecting and labeling a whole large set of real images with annotations. We
show that starting with only 100 real images, we can generate data to train a
detector that achieves comparable results to the same detector but trained on a
real, several dozen times bigger dataset. We prove the usefulness of the method
in microbe detection and segmentation, but we expect that it is general and
flexible and can also be applicable in other domains of science and industry to
detect various objects.
- Abstract(参考訳): 深層学習モデルの学習に使用できるペトリ皿の微生物画像の合成データセットを作成するための効果的な戦略を提案する。
開発したジェネレータは、従来のコンピュータビジョンアルゴリズムと、データ拡張のためのニューラルスタイル転送法を併用する。
本手法は,5種類の異なる微生物種を局在化,分節化,分類できるニューラルネットワークモデルのトレーニングに使用できる,現実的な画像のデータセットを合成することができることを示す。
本手法では,実画像の大規模な集合をアノテーションで収集しラベル付けするよりも,有用なデータセットを得るためのリソースが大幅に少ない。
実画像100枚から始めて、同じ検出器に匹敵する結果を達成するが、実際の数十倍のデータセットでトレーニングされる検出器を訓練するためのデータを生成することができる。
微生物検出とセグメンテーションにおけるこの手法の有用性を実証するが、汎用的で柔軟性があり、科学や産業の他の分野にも応用できると期待する。
関連論文リスト
- Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
オーバーセグメントニューロン間の接続を予測し,人間の作業量を削減することを目的としている。
最初はFlyTracingという名前のデータセットを構築しました。
本稿では,高密度なボリュームEM画像の埋め込みを生成するための,新しい接続性を考慮したコントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-05T19:45:12Z) - Diffusion-based Data Augmentation for Nuclei Image Segmentation [68.28350341833526]
核セグメンテーションのための拡散法を初めて導入する。
このアイデアは、多数のラベル付き画像を合成し、セグメンテーションモデルを訓練することを目的としている。
実験の結果,10%のラベル付き実データセットを合成サンプルで拡張することにより,同等のセグメンテーション結果が得られることがわかった。
論文 参考訳(メタデータ) (2023-10-22T06:16:16Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
本稿では,スライド病理像全体に対する共有コンテキスト処理の新たな概念を提案する。
AMIGOは、組織内のセルラーグラフを使用して、患者に単一の表現を提供する。
我々のモデルは、データの20%以下で同じ性能を達成できる程度に、欠落した情報に対して強い堅牢性を示す。
論文 参考訳(メタデータ) (2023-03-01T23:37:45Z) - Denoising Diffusion Probabilistic Models for Generation of Realistic
Fully-Annotated Microscopy Image Data Sets [1.07539359851877]
本研究では,拡散モデルにより,フルアノテートされた顕微鏡画像データセットを効果的に生成できることを実証する。
提案されたパイプラインは、ディープラーニングベースのセグメンテーションアプローチのトレーニングにおいて、手動アノテーションへの依存を減らすのに役立つ。
論文 参考訳(メタデータ) (2023-01-02T14:17:08Z) - Learning multi-scale functional representations of proteins from
single-cell microscopy data [77.34726150561087]
局所化分類に基づいて訓練された単純な畳み込みネットワークは、多様な機能情報をカプセル化したタンパク質表現を学習できることを示す。
また,生物機能の異なるスケールでタンパク質表現の質を評価するためのロバストな評価戦略を提案する。
論文 参考訳(メタデータ) (2022-05-24T00:00:07Z) - 3D fluorescence microscopy data synthesis for segmentation and
benchmarking [0.9922927990501083]
3次元蛍光顕微鏡のための現実的な画像データを生成するために、条件付き生成対向ネットワークを利用することができる。
細胞構造のさらなる位置条件付けにより、位置依存的な強度特性の再構築が可能となる。
パッチワイド動作原理とその後のフルサイズ再組み立て戦略を用いて、任意のサイズと異なる生物の画像データを生成する。
論文 参考訳(メタデータ) (2021-07-21T16:08:56Z) - Latent Feature Representation via Unsupervised Learning for Pattern
Discovery in Massive Electron Microscopy Image Volumes [4.278591555984395]
特に,データセットにおける意味的類似性を捉える潜在表現を学ぶための教師なしのディープラーニングアプローチを提案する。
動物脳の比較的小さな部分でもテラバイトの画像を要求できるナノスケールの電子顕微鏡データに適用する手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-12-22T17:14:19Z) - Self supervised contrastive learning for digital histopathology [0.0]
我々はSimCLRと呼ばれる対照的な自己教師型学習手法を用いて、自然シーン画像の最先端結果を得た。
異なる種類の染色特性と分解特性とを組み合わせることで,学習した特徴の質が向上することがわかった。
学習した機能に基づいてトレーニングされた線形分類器は、デジタル病理学データセットで事前トレーニングされたネットワークが、ImageNet事前トレーニングされたネットワークよりも優れたパフォーマンスを示すことを示している。
論文 参考訳(メタデータ) (2020-11-27T19:18:45Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - PennSyn2Real: Training Object Recognition Models without Human Labeling [12.923677573437699]
我々はPennSyn2Realを提案する。20種類以上のマイクロエアロビー(MAV)の10万以上の4K画像からなる合成データセットである。
このデータセットは、MAV検出や分類などのハイレベルコンピュータビジョンタスクのための任意の数のトレーニングイメージを生成するために使用することができる。
このフレームワークを用いて生成された合成データは,検出やセグメンテーションといった一般的なオブジェクト認識タスクに対して,CNNモデルをトレーニングするために直接利用できることを示す。
論文 参考訳(メタデータ) (2020-09-22T02:53:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。