A Granular Sieving Algorithm for Deterministic Global Optimization
- URL: http://arxiv.org/abs/2107.06581v1
- Date: Wed, 14 Jul 2021 10:03:03 GMT
- Title: A Granular Sieving Algorithm for Deterministic Global Optimization
- Authors: Tao Qian, Lei Dai, Liming Zhang, and Zehua Chen
- Abstract summary: A gradient-free deterministic method is developed to solve global optimization problems for Lipschitz continuous functions.
The method can be regarded as granular sieving with synchronous analysis in both the domain and range of the objective function.
- Score: 6.01919376499018
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A gradient-free deterministic method is developed to solve global
optimization problems for Lipschitz continuous functions defined in arbitrary
path-wise connected compact sets in Euclidean spaces. The method can be
regarded as granular sieving with synchronous analysis in both the domain and
range of the objective function. With straightforward mathematical formulation
applicable to both univariate and multivariate objective functions, the global
minimum value and all the global minimizers are located through two decreasing
sequences of compact sets in, respectively, the domain and range spaces. The
algorithm is easy to implement with moderate computational cost. The method is
tested against extensive benchmark functions in the literature. The
experimental results show remarkable effectiveness and applicability of the
algorithm.
Related papers
- ProGO: Probabilistic Global Optimizer [9.772380490791635]
In this paper we develop an algorithm that converges to the global optima under some mild conditions.
We show that the proposed algorithm outperforms, by order of magnitude, many existing state-of-the-art methods.
arXiv Detail & Related papers (2023-10-04T22:23:40Z) - Sample Complexity for Quadratic Bandits: Hessian Dependent Bounds and
Optimal Algorithms [64.10576998630981]
We show the first tight characterization of the optimal Hessian-dependent sample complexity.
A Hessian-independent algorithm universally achieves the optimal sample complexities for all Hessian instances.
The optimal sample complexities achieved by our algorithm remain valid for heavy-tailed noise distributions.
arXiv Detail & Related papers (2023-06-21T17:03:22Z) - A Stochastic-Gradient-based Interior-Point Algorithm for Solving Smooth Bound-Constrained Optimization Problems [12.29270365918848]
The proposed algorithm is based on the subject-point unique constraints from other interior-point methods.
It is shown that with a careful balance between the projection, step-size and sequence sequences, the proposed algorithm convergence guarantees in both numerical and deterministic settings.
arXiv Detail & Related papers (2023-04-28T15:30:43Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Global and Preference-based Optimization with Mixed Variables using Piecewise Affine Surrogates [0.6083861980670925]
This paper proposes a novel surrogate-based global optimization algorithm to solve linearly constrained mixed-variable problems.
We assume the objective function is black-box and expensive-to-evaluate, while the linear constraints are quantifiable unrelaxable a priori known.
We introduce two types of exploration functions to efficiently search the feasible domain via mixed-integer linear programming solvers.
arXiv Detail & Related papers (2023-02-09T15:04:35Z) - Distributed stochastic proximal algorithm with random reshuffling for
non-smooth finite-sum optimization [28.862321453597918]
Non-smooth finite-sum minimization is a fundamental problem in machine learning.
This paper develops a distributed proximal-gradient algorithm with random reshuffling to solve the problem.
arXiv Detail & Related papers (2021-11-06T07:29:55Z) - Continuation Newton methods with deflation techniques for global
optimization problems [3.705839280172101]
A global minimum point of an optimization problem is of interest in engineering.
In this article, we consider a new memetic algorithm for this nonlinear largescale problem.
According to our numerical experiments, new algorithm works well for unconstrained unconstrained problems.
arXiv Detail & Related papers (2021-07-29T09:53:49Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
Our algorithm generates a sequence of finite-dimensional random subspaces of functional space spanned by a set of draws from the experimenter's Gaussian Process.
Standard Bayesian optimisation is applied on each subspace, and the best solution found used as a starting point (origin) for the next subspace.
We test our algorithm in simulated and real-world experiments, namely blind function matching, finding the optimal precipitation-strengthening function for an aluminium alloy, and learning rate schedule optimisation for deep networks.
arXiv Detail & Related papers (2020-09-08T06:54:11Z) - Aligning Partially Overlapping Point Sets: an Inner Approximation
Algorithm [80.15123031136564]
We propose a robust method to align point sets where there is no prior information about the value of the transformation.
Our algorithm does not need regularization on transformation, and thus can handle the situation where there is no prior information about the values of the transformations.
Experimental results demonstrate the better robustness of the proposed method over state-of-the-art algorithms.
arXiv Detail & Related papers (2020-07-05T15:23:33Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.