Learn-Morph-Infer: a new way of solving the inverse problem for brain
tumor modeling
- URL: http://arxiv.org/abs/2111.04090v1
- Date: Sun, 7 Nov 2021 13:45:35 GMT
- Title: Learn-Morph-Infer: a new way of solving the inverse problem for brain
tumor modeling
- Authors: Ivan Ezhov, Kevin Scibilia, Katharina Franitza, Felix Steinbauer,
Suprosanna Shit, Lucas Zimmer, Jana Lipkova, Florian Kofler, Johannes
Paetzold, Luca Canalini, Diana Waldmannstetter, Martin Menten, Marie Metz,
Benedikt Wiestler, and Bjoern Menze
- Abstract summary: We introduce a methodology for inferring patient-specific spatial distribution of brain tumor from T1Gd and FLAIR MRI medical scans.
Coined as itLearn-Morph-Infer, the method achieves real-time performance in the order of minutes on widely available hardware.
- Score: 1.1214822628210914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current treatment planning of patients diagnosed with brain tumor could
significantly benefit by accessing the spatial distribution of tumor cell
concentration. Existing diagnostic modalities, such as magnetic-resonance
imaging (MRI), contrast sufficiently well areas of high cell density. However,
they do not portray areas of low concentration, which can often serve as a
source for the secondary appearance of the tumor after treatment. Numerical
simulations of tumor growth could complement imaging information by providing
estimates of full spatial distributions of tumor cells. Over recent years a
corpus of literature on medical image-based tumor modeling was published. It
includes different mathematical formalisms describing the forward tumor growth
model. Alongside, various parametric inference schemes were developed to
perform an efficient tumor model personalization, i.e. solving the inverse
problem. However, the unifying drawback of all existing approaches is the time
complexity of the model personalization that prohibits a potential integration
of the modeling into clinical settings. In this work, we introduce a
methodology for inferring patient-specific spatial distribution of brain tumor
from T1Gd and FLAIR MRI medical scans. Coined as \textit{Learn-Morph-Infer} the
method achieves real-time performance in the order of minutes on widely
available hardware and the compute time is stable across tumor models of
different complexity, such as reaction-diffusion and
reaction-advection-diffusion models. We believe the proposed inverse solution
approach not only bridges the way for clinical translation of brain tumor
personalization but can also be adopted to other scientific and engineering
domains.
Related papers
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Physics-Regularized Multi-Modal Image Assimilation for Brain Tumor Localization [3.666412718346211]
We introduce a novel method that integrates data-driven and physics-based cost functions.
We propose a unique discretization scheme that quantifies how well the learned distributions of tumor and brain tissues adhere to their respective growth and elasticity equations.
arXiv Detail & Related papers (2024-09-30T15:36:14Z) - Hybrid Multihead Attentive Unet-3D for Brain Tumor Segmentation [0.0]
Brain tumor segmentation is a critical task in medical image analysis, aiding in the diagnosis and treatment planning of brain tumor patients.
Various deep learning-based techniques have made significant progress in this field, however, they still face limitations in terms of accuracy due to the complex and variable nature of brain tumor morphology.
We propose a novel Hybrid Multihead Attentive U-Net architecture, to address the challenges in accurate brain tumor segmentation.
arXiv Detail & Related papers (2024-05-22T02:46:26Z) - Towards Generalizable Tumor Synthesis [48.45704270448412]
Tumor synthesis enables the creation of artificial tumors in medical images, facilitating the training of AI models for tumor detection and segmentation.
This paper made a progressive stride toward generalizable tumor synthesis by leveraging a critical observation.
We have ascertained that generative AI models, e.g., Diffusion Models, can create realistic tumors generalized to a range of organs even when trained on a limited number of tumor examples from only one organ.
arXiv Detail & Related papers (2024-02-29T18:57:39Z) - Integration of Graph Neural Network and Neural-ODEs for Tumor Dynamic Prediction [4.850774880198265]
We propose a graph encoder that utilizes a bipartite Graph Convolutional Neural network (GCN) combined with Neural Ordinary Differential Equations (Neural-ODEs)
We first show that the methodology is able to discover a tumor dynamic model that significantly improves upon an empirical model.
Our findings indicate that the methodology holds significant promise and offers potential applications in pre-clinical settings.
arXiv Detail & Related papers (2023-10-02T06:39:08Z) - Treatment-aware Diffusion Probabilistic Model for Longitudinal MRI
Generation and Diffuse Glioma Growth Prediction [0.5806504980491878]
We present a novel end-to-end network capable of generating future tumor masks and realistic MRIs of how the tumor will look at any future time points.
Our approach is based on cutting-edge diffusion probabilistic models and deep-segmentation neural networks.
arXiv Detail & Related papers (2023-09-11T12:12:52Z) - Automated ensemble method for pediatric brain tumor segmentation [0.0]
This study introduces a novel ensemble approach using ONet and modified versions of UNet.
Data augmentation ensures robustness and accuracy across different scanning protocols.
Results indicate that this advanced ensemble approach offers promising prospects for enhanced diagnostic accuracy.
arXiv Detail & Related papers (2023-08-14T15:29:32Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
We present a deep learning-based brain tumor recurrence location prediction network.
We first train a multi-modal brain tumor segmentation network on the public dataset BraTS 2021.
Then, the pre-trained encoder is transferred to our private dataset for extracting the rich semantic features.
Two decoders are constructed to jointly segment the present brain tumor and predict its future tumor recurrence location.
arXiv Detail & Related papers (2023-04-11T02:45:38Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
We show improved anomaly segmentation performance and the general capability to obtain much more crisp reconstructions of input data at native resolution.
The modeling of the laplacian pyramid further enables the delineation and aggregation of lesions at multiple scales.
arXiv Detail & Related papers (2020-06-23T09:20:42Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.