Treatment-aware Diffusion Probabilistic Model for Longitudinal MRI
Generation and Diffuse Glioma Growth Prediction
- URL: http://arxiv.org/abs/2309.05406v3
- Date: Thu, 14 Sep 2023 10:22:07 GMT
- Title: Treatment-aware Diffusion Probabilistic Model for Longitudinal MRI
Generation and Diffuse Glioma Growth Prediction
- Authors: Qinghui Liu, Elies Fuster-Garcia, Ivar Thokle Hovden, Donatas
Sederevicius, Karoline Skogen, Bradley J MacIntosh, Edvard Gr{\o}dem, Till
Schellhorn, Petter Brandal, Atle Bj{\o}rnerud, and Kyrre Eeg Emblem
- Abstract summary: We present a novel end-to-end network capable of generating future tumor masks and realistic MRIs of how the tumor will look at any future time points.
Our approach is based on cutting-edge diffusion probabilistic models and deep-segmentation neural networks.
- Score: 0.5806504980491878
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Diffuse gliomas are malignant brain tumors that grow widespread through the
brain. The complex interactions between neoplastic cells and normal tissue, as
well as the treatment-induced changes often encountered, make glioma tumor
growth modeling challenging. In this paper, we present a novel end-to-end
network capable of generating future tumor masks and realistic MRIs of how the
tumor will look at any future time points for different treatment plans. Our
approach is based on cutting-edge diffusion probabilistic models and
deep-segmentation neural networks. We included sequential multi-parametric
magnetic resonance images (MRI) and treatment information as conditioning
inputs to guide the generative diffusion process. This allows for tumor growth
estimates at any given time point. We trained the model using real-world
postoperative longitudinal MRI data with glioma tumor growth trajectories
represented as tumor segmentation maps over time. The model has demonstrated
promising performance across a range of tasks, including the generation of
high-quality synthetic MRIs with tumor masks, time-series tumor segmentations,
and uncertainty estimates. Combined with the treatment-aware generated MRIs,
the tumor growth predictions with uncertainty estimates can provide useful
information for clinical decision-making.
Related papers
- Deep learning-based auto-segmentation of paraganglioma for growth monitoring [0.0]
We propose an automated tumor volume measurement method based on a deep learning segmentation model using no-new-UNnet (nnUNet)
We assess the performance of the model based on visual inspection by a senior otorhinolaryngologist and several quantitative metrics.
Using the created model, and a linking procedure that we propose to track the tumor over time, we show how additional volume measurements affect the fit of known growth functions.
arXiv Detail & Related papers (2024-03-19T14:08:56Z) - Towards Generalizable Tumor Synthesis [48.45704270448412]
Tumor synthesis enables the creation of artificial tumors in medical images, facilitating the training of AI models for tumor detection and segmentation.
This paper made a progressive stride toward generalizable tumor synthesis by leveraging a critical observation.
We have ascertained that generative AI models, e.g., Diffusion Models, can create realistic tumors generalized to a range of organs even when trained on a limited number of tumor examples from only one organ.
arXiv Detail & Related papers (2024-02-29T18:57:39Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - The Rio Hortega University Hospital Glioblastoma dataset: a
comprehensive collection of preoperative, early postoperative and recurrence
MRI scans (RHUH-GBM) [0.0]
"R'io Hortega University Hospital Glioblastoma dataset" is a collection of multiparametric MRI images, volumetric assessments, molecular data, and survival details.
The dataset features expert-corrected segmentations of tumor subregions, offering valuable ground truth data for developing algorithms for postoperative and follow-up MRI scans.
arXiv Detail & Related papers (2023-04-27T13:10:55Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
We present a deep learning-based brain tumor recurrence location prediction network.
We first train a multi-modal brain tumor segmentation network on the public dataset BraTS 2021.
Then, the pre-trained encoder is transferred to our private dataset for extracting the rich semantic features.
Two decoders are constructed to jointly segment the present brain tumor and predict its future tumor recurrence location.
arXiv Detail & Related papers (2023-04-11T02:45:38Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
We develop a deep learning framework that can accurately predict and visualize the progression of osteolytic bone lesions.
It will assist in planning and evaluating treatment strategies to prevent skeletal related events (SREs) in breast cancer patients.
arXiv Detail & Related papers (2022-03-20T21:00:10Z) - Deep Learning for Reaction-Diffusion Glioma Growth Modelling: Towards a
Fully Personalised Model? [0.2609639566830968]
Reaction-diffusion models have been proposed for decades to capture the growth of gliomas.
Deep convolutional neural networks (DCNNs) can address the pitfalls commonly encountered in the field.
This approach may open the perspective of a clinical application of reaction-diffusion growth models for tumour prognosis and treatment planning.
arXiv Detail & Related papers (2021-11-26T10:16:57Z) - Learn-Morph-Infer: a new way of solving the inverse problem for brain
tumor modeling [1.1214822628210914]
We introduce a methodology for inferring patient-specific spatial distribution of brain tumor from T1Gd and FLAIR MRI medical scans.
Coined as itLearn-Morph-Infer, the method achieves real-time performance in the order of minutes on widely available hardware.
arXiv Detail & Related papers (2021-11-07T13:45:35Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
Super resolution ultrasound localization microscopy enables imaging of the microvasculature at the capillary level.
In this work we use a deep neural network architecture that makes effective use of signal structure to address these challenges.
By leveraging our trained network, the microvasculature structure is recovered in a short time, without prior PSF knowledge, and without requiring separability of the UCAs.
arXiv Detail & Related papers (2021-07-12T09:04:20Z) - Expectation-Maximization Regularized Deep Learning for Weakly Supervised
Tumor Segmentation for Glioblastoma [8.24450401153384]
We present an Expectation-Maximization (EM) Regularized Deep Learning (EMReDL) model for the weakly supervised tumor segmentation.
The proposed framework was tailored to glioblastoma, a type of malignant tumor characterized by its diffuse infiltration into the surrounding brain tissue.
arXiv Detail & Related papers (2021-01-21T18:14:43Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.