Structure-aware generation of drug-like molecules
- URL: http://arxiv.org/abs/2111.04107v1
- Date: Sun, 7 Nov 2021 15:19:54 GMT
- Title: Structure-aware generation of drug-like molecules
- Authors: Pavol Drot\'ar, Arian Rokkum Jamasb, Ben Day, C\u{a}t\u{a}lina Cangea,
Pietro Li\`o
- Abstract summary: Deep generative methods have shown promise in proposing novel molecules from scratch (de-novo design)
We propose a novel supervised model that generates molecular graphs jointly with 3D pose in a discretised molecular space.
We evaluate our model using a docking benchmark and find that guided generation improves predicted binding affinities by 8% and drug-likeness scores by 10% over the baseline.
- Score: 2.449909275410288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structure-based drug design involves finding ligand molecules that exhibit
structural and chemical complementarity to protein pockets. Deep generative
methods have shown promise in proposing novel molecules from scratch (de-novo
design), avoiding exhaustive virtual screening of chemical space. Most
generative de-novo models fail to incorporate detailed ligand-protein
interactions and 3D pocket structures. We propose a novel supervised model that
generates molecular graphs jointly with 3D pose in a discretised molecular
space. Molecules are built atom-by-atom inside pockets, guided by structural
information from crystallographic data. We evaluate our model using a docking
benchmark and find that guided generation improves predicted binding affinities
by 8% and drug-likeness scores by 10% over the baseline. Furthermore, our model
proposes molecules with binding scores exceeding some known ligands, which
could be useful in future wet-lab studies.
Related papers
- DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
Existing structured-based drug design methods treat all ligand atoms equally.
We propose a new diffusion model, DecompDiff, with decomposed priors over arms and scaffold.
Our approach achieves state-of-the-art performance in generating high-affinity molecules.
arXiv Detail & Related papers (2024-02-26T05:21:21Z) - Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [63.23362798102195]
We propose D3FG, a functional-group-based diffusion model for pocket-specific molecule generation and elaboration.
D3FG decomposes molecules into two categories of components: functional groups defined as rigid bodies and linkers as mass points.
In the experiments, our method can generate molecules with more realistic 3D structures, competitive affinities toward the protein targets, and better drug properties.
arXiv Detail & Related papers (2023-05-30T06:41:20Z) - An Equivariant Generative Framework for Molecular Graph-Structure
Co-Design [54.92529253182004]
We present MolCode, a machine learning-based generative framework for underlineMolecular graph-structure underlineCo-design.
In MolCode, 3D geometric information empowers the molecular 2D graph generation, which in turn helps guide the prediction of molecular 3D structure.
Our investigation reveals that the 2D topology and 3D geometry contain intrinsically complementary information in molecule design.
arXiv Detail & Related papers (2023-04-12T13:34:22Z) - DiffBP: Generative Diffusion of 3D Molecules for Target Protein Binding [51.970607704953096]
Previous works usually generate atoms in an auto-regressive way, where element types and 3D coordinates of atoms are generated one by one.
In real-world molecular systems, the interactions among atoms in an entire molecule are global, leading to the energy function pair-coupled among atoms.
In this work, a generative diffusion model for molecular 3D structures based on target proteins is established, at a full-atom level in a non-autoregressive way.
arXiv Detail & Related papers (2022-11-21T07:02:15Z) - Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design [82.23006955069229]
We propose DiffLinker, an E(3)-equivariant 3D-conditional diffusion model for molecular linker design.
Our model places missing atoms in between and designs a molecule incorporating all the initial fragments.
We demonstrate that DiffLinker outperforms other methods on the standard datasets generating more diverse and synthetically-accessible molecules.
arXiv Detail & Related papers (2022-10-11T09:13:37Z) - Widely Used and Fast De Novo Drug Design by a Protein Sequence-Based
Reinforcement Learning Model [4.815696666006742]
Structure-based de novo method can overcome the data scarcity of active by incorporating drug-target interaction into deep generative architectures.
Here, we demonstrate a widely used and fast protein sequence-based reinforcement learning model for drug discovery.
As a proof of concept, the RL model was utilized to design molecules for four targets.
arXiv Detail & Related papers (2022-08-14T10:41:52Z) - In-Pocket 3D Graphs Enhance Ligand-Target Compatibility in Generative
Small-Molecule Creation [0.0]
We present a graph-based generative modeling technology that encodes explicit 3D protein-ligand contacts within a relational graph architecture.
The models combine a conditional variational autoencoder that allows for activity-specific molecule generation with putative contact generation that provides predictions of molecular interactions within the target binding pocket.
arXiv Detail & Related papers (2022-04-05T22:53:51Z) - A 3D Molecule Generative Model for Structure-Based Drug Design [18.29582138009123]
We study a fundamental problem in structure-based drug design -- generating molecules that bind to specific protein binding sites.
We propose a 3D generative model that generates molecules given a designated 3D protein binding site.
arXiv Detail & Related papers (2022-03-20T03:54:47Z) - Scalable Fragment-Based 3D Molecular Design with Reinforcement Learning [68.8204255655161]
We introduce a novel framework for scalable 3D design that uses a hierarchical agent to build molecules.
In a variety of experiments, we show that our agent, guided only by energy considerations, can efficiently learn to produce molecules with over 100 atoms.
arXiv Detail & Related papers (2022-02-01T18:54:24Z) - Generating 3D Molecules Conditional on Receptor Binding Sites with Deep
Generative Models [0.0]
We describe for the first time a deep learning system for generating 3D molecular structures conditioned on a receptor binding site.
We apply atom fitting and bond inference procedures to construct valid molecular conformations from generated atomic densities.
This work opens the door for end-to-end prediction of stable bioactive molecules from protein structures with deep learning.
arXiv Detail & Related papers (2021-10-28T15:17:24Z) - Learning a Continuous Representation of 3D Molecular Structures with
Deep Generative Models [0.0]
Generative models are an entirely different approach that learn to represent and optimize molecules in a continuous latent space.
We describe deep generative models of three dimensional molecular structures using atomic density grids.
We are also able to sample diverse sets of molecules based on a given input compound to increase the probability of creating valid, drug-like molecules.
arXiv Detail & Related papers (2020-10-17T01:15:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.