論文の概要: Automatic Goal Generation using Dynamical Distance Learning
- arxiv url: http://arxiv.org/abs/2111.04120v1
- Date: Sun, 7 Nov 2021 16:23:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-09 16:43:42.541061
- Title: Automatic Goal Generation using Dynamical Distance Learning
- Title(参考訳): 動的距離学習を用いたゴール自動生成
- Authors: Bharat Prakash, Nicholas Waytowich, Tinoosh Mohsenin, Tim Oates
- Abstract要約: 強化学習(RL)エージェントは環境と対話することで複雑な逐次意思決定タスクを学習することができる。
エージェントが複雑なタスクを解くために複数の目標を達成する必要があるマルチゴールRLの分野では、サンプリング効率を改善することは特に困難である。
本稿では,動的距離関数(DDF)を用いた自動ゴール生成手法を提案する。
- 参考スコア(独自算出の注目度): 5.797847756967884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning (RL) agents can learn to solve complex sequential
decision making tasks by interacting with the environment. However, sample
efficiency remains a major challenge. In the field of multi-goal RL, where
agents are required to reach multiple goals to solve complex tasks, improving
sample efficiency can be especially challenging. On the other hand, humans or
other biological agents learn such tasks in a much more strategic way,
following a curriculum where tasks are sampled with increasing difficulty level
in order to make gradual and efficient learning progress. In this work, we
propose a method for automatic goal generation using a dynamical distance
function (DDF) in a self-supervised fashion. DDF is a function which predicts
the dynamical distance between any two states within a markov decision process
(MDP). With this, we generate a curriculum of goals at the appropriate
difficulty level to facilitate efficient learning throughout the training
process. We evaluate this approach on several goal-conditioned robotic
manipulation and navigation tasks, and show improvements in sample efficiency
over a baseline method which only uses random goal sampling.
- Abstract(参考訳): 強化学習(RL)エージェントは環境と対話することで複雑な逐次意思決定タスクを学習することができる。
しかし、サンプル効率は依然として大きな課題である。
エージェントが複雑なタスクを解決するために複数の目標を達成する必要があるマルチゴールrlの分野において、サンプル効率の改善は特に困難である。
一方、人間や他の生物学的エージェントは、段階的かつ効率的な学習を進めるために、課題を難易度の増加とともにサンプリングするカリキュラムに従って、より戦略的にそのようなタスクを学習する。
本研究では,動的距離関数(ddf)を用いた自己教師あり方式による自動ゴール生成手法を提案する。
DDFはマークフ決定過程(MDP)内の任意の2つの状態間の動的距離を予測する関数である。
これにより,適切な難易度レベルで目標のカリキュラムを作成し,トレーニングプロセス全体の効率的な学習を促進する。
このアプローチをいくつかの目標条件付きロボット操作およびナビゲーションタスクで評価し、ランダムな目標サンプリングのみを使用するベースライン法よりもサンプル効率が向上することを示す。
関連論文リスト
- Enhancing Robotic Navigation: An Evaluation of Single and
Multi-Objective Reinforcement Learning Strategies [0.9208007322096532]
本研究では,ロボットが目的達成に向けて効果的に移動できるよう訓練するための単目的と多目的の強化学習法の比較分析を行った。
報酬関数を変更して報酬のベクターを返却し、それぞれ異なる目的に関連付けることで、ロボットはそれぞれの目標を効果的にバランスさせるポリシーを学ぶ。
論文 参考訳(メタデータ) (2023-12-13T08:00:26Z) - Efficient Learning of High Level Plans from Play [57.29562823883257]
本稿では,移動計画と深いRLを橋渡しするロボット学習のフレームワークであるELF-Pについて紹介する。
ELF-Pは、複数の現実的な操作タスクよりも、関連するベースラインよりもはるかに優れたサンプル効率を有することを示す。
論文 参考訳(メタデータ) (2023-03-16T20:09:47Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
本稿では,複雑なロボットタスクの制御ポリシーを1つの実演で学習するために,シーケンシャルなバイアスを活用することを提案する。
本研究は, ヒューマノイド移動やスタンドアップなど, 模擬課題のいくつかを, 前例のないサンプル効率で解くことができることを示す。
論文 参考訳(メタデータ) (2022-11-09T10:28:40Z) - Deep Reinforcement Learning with Adaptive Hierarchical Reward for
MultiMulti-Phase Multi Multi-Objective Dexterous Manipulation [11.638614321552616]
優先度の変動により、ロボットは深層強化学習(DRL)法で最適なポリシーをほとんど学ばず、あるいはうまくいかなかった。
我々は、DRLエージェントを誘導し、複数の優先順位付けされた目的を持つ操作タスクを学習するための、新しい適応階層リワード機構(AHRM)を開発した。
提案手法は,JACOロボットアームを用いた多目的操作タスクにおいて検証される。
論文 参考訳(メタデータ) (2022-05-26T15:44:31Z) - Skill-based Meta-Reinforcement Learning [65.31995608339962]
本研究では,長期的スパース・リワードタスクにおけるメタラーニングを実現する手法を提案する。
私たちの中核となる考え方は、メタ学習中にオフラインデータセットから抽出された事前経験を活用することです。
論文 参考訳(メタデータ) (2022-04-25T17:58:19Z) - C-Planning: An Automatic Curriculum for Learning Goal-Reaching Tasks [133.40619754674066]
ゴール条件強化学習は、ナビゲーションや操作を含む幅広い領域のタスクを解決できる。
本研究では,学習時間における探索を用いて,中間状態を自動生成する遠隔目標獲得タスクを提案する。
E-stepはグラフ検索を用いて最適な経路点列を計画することに対応し、M-stepはそれらの経路点に到達するための目標条件付きポリシーを学習することを目的としている。
論文 参考訳(メタデータ) (2021-10-22T22:05:31Z) - Diversity-based Trajectory and Goal Selection with Hindsight Experience
Replay [8.259694128526112]
我々はHER(DTGSH)を用いた多様性に基づく軌道と目標選択を提案する。
提案手法は,全てのタスクにおいて,他の最先端手法よりも高速に学習し,高い性能を達成することができることを示す。
論文 参考訳(メタデータ) (2021-08-17T21:34:24Z) - Adversarial Intrinsic Motivation for Reinforcement Learning [60.322878138199364]
政策状態の訪問分布と目標分布とのワッサースタイン-1距離が強化学習タスクに有効に活用できるかどうかを検討する。
我々のアプローチは、AIM (Adversarial Intrinsic Motivation) と呼ばれ、このワッサーシュタイン-1距離をその双対目的を通して推定し、補足報酬関数を計算する。
論文 参考訳(メタデータ) (2021-05-27T17:51:34Z) - Automatic Curriculum Learning through Value Disagreement [95.19299356298876]
新しい未解決タスクを継続的に解決することが、多様な行動を学ぶための鍵です。
エージェントが複数の目標を達成する必要があるマルチタスク領域では、トレーニング目標の選択はサンプル効率に大きな影響を与える可能性がある。
そこで我々は,エージェントが解決すべき目標のための自動カリキュラムを作成することを提案する。
提案手法は,13のマルチゴールロボットタスクと5つのナビゲーションタスクにまたがって評価し,現在の最先端手法よりも高い性能を示す。
論文 参考訳(メタデータ) (2020-06-17T03:58:25Z) - Generating Automatic Curricula via Self-Supervised Active Domain
Randomization [11.389072560141388]
我々は、目標と環境のカリキュラムを共同で学習するために、セルフプレイフレームワークを拡張します。
本手法は, エージェントがより困難なタスクや環境変化から学習する, ゴールタスクの複合カリキュラムを生成する。
本結果から,各環境に設定された目標の難易度とともに,環境の難易度を両立させるカリキュラムが,テスト対象の目標指向タスクに実用的利益をもたらすことが示唆された。
論文 参考訳(メタデータ) (2020-02-18T22:45:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。