論文の概要: NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient
Framework
- arxiv url: http://arxiv.org/abs/2111.04130v1
- Date: Sun, 7 Nov 2021 17:13:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-09 14:09:25.805102
- Title: NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient
Framework
- Title(参考訳): 大規模事前トレーニングのないスクラッチからのNLP - シンプルで効率的なフレームワーク
- Authors: Xingcheng Yao, Yanan Zheng, Xiaocong Yang, Zhilin Yang
- Abstract要約: 本稿では,大規模事前学習に依存しない,シンプルで効率的な学習フレームワーク TLM を提案する。
4つの領域の8つの分類データセットにおいて、TLMは事前訓練された言語モデルよりも良い結果が得られる。
- 参考スコア(独自算出の注目度): 10.656788279434798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pretrained language models have become the standard approach for many NLP
tasks due to strong performance, but they are very expensive to train. We
propose a simple and efficient learning framework, TLM, that does not rely on
large-scale pretraining. Given some labeled task data and a large general
corpus, TLM uses task data as queries to retrieve a tiny subset of the general
corpus and jointly optimizes the task objective and the language modeling
objective from scratch. On eight classification datasets in four domains, TLM
achieves results better than or similar to pretrained language models (e.g.,
RoBERTa-Large) while reducing the training FLOPs by two orders of magnitude.
With high accuracy and efficiency, we hope TLM will contribute to democratizing
NLP and expediting its development.
- Abstract(参考訳): 事前訓練された言語モデルは、高い性能のために多くのNLPタスクの標準的アプローチとなっているが、訓練は非常に高価である。
本稿では,大規模事前学習に依存しない,シンプルで効率的な学習フレームワーク TLM を提案する。
いくつかのラベル付きタスクデータと大きな汎用コーパスが与えられたとき、TLMはタスクデータをクエリとして使用して、汎用コーパスの小さなサブセットを検索し、タスク目的と言語モデリング目的をスクラッチから共同で最適化する。
4つの領域の8つの分類データセットにおいて、TLMは事前訓練された言語モデル(例えばRoBERTa-Large)よりも良い結果を得ると同時に、FLOPを2桁の精度で縮小する。
高い精度と効率で、TLMがNLPの民主化に寄与し、その開発の迅速化に寄与することを期待します。
関連論文リスト
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Evaluating Large Language Models for Health-Related Text Classification Tasks with Public Social Media Data [3.9459077974367833]
大規模言語モデル(LLM)は、NLPタスクにおいて顕著な成功を収めた。
我々は、サポートベクトルマシン(SVM)に基づく教師付き古典機械学習モデルと、RoBERTa、BERTweet、SocBERTに基づく3つの教師付き事前訓練言語モデル(PLM)と、6つのテキスト分類タスクで2つのLLMベースの分類器(GPT3.5、GPT4)をベンチマークした。
LLM(GPT-4)を用いた軽量教師付き分類モデルの訓練には,比較的小さな人手によるデータ拡張(GPT-4)が有効であることを示す総合的な実験を行った。
論文 参考訳(メタデータ) (2024-03-27T22:05:10Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
本稿では,大規模な言語モデルをアノテータとして利用し,それをアクティブな学習ループに配置して,アノテートを効率的に行うLLMaAAを提案する。
我々は、エンティティ認識と関係抽出という、2つの古典的NLPタスクの実験と分析を行う。
LLMaAAでは、LLM生成ラベルからトレーニングされたタスク固有のモデルが、数百の注釈付きサンプルで教師より優れている。
論文 参考訳(メタデータ) (2023-10-30T14:54:15Z) - CoAnnotating: Uncertainty-Guided Work Allocation between Human and Large
Language Models for Data Annotation [94.59630161324013]
本稿では,非構造化テキストの大規模共同アノテーションのための新しいパラダイムであるCoAnnotatingを提案する。
我々の実証研究は、CoAnnotatingが、異なるデータセット上の結果から作業を割り当てる効果的な手段であることを示し、ランダムベースラインよりも最大21%のパフォーマンス改善を実現している。
論文 参考訳(メタデータ) (2023-10-24T08:56:49Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
大規模言語モデル(LLM)は、より大きな文脈長を扱う。
LLM は、ターゲットテキストが大きければ SotA を一貫して上回る。
ゼロショット学習よりもパフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-12T17:17:27Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z) - Pre-Training to Learn in Context [138.0745138788142]
言語モデルが文脈で学習するために明示的に訓練されていないため、コンテキスト内学習の能力は十分に活用されていない。
In-Context Learning のための PICL (Pre-training for In-Context Learning) を提案する。
実験の結果,PICLはベースラインよりも効率が高く,タスクの汎用性が高く,約4倍のパラメータを持つ言語モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-05-16T03:38:06Z) - Distilling Step-by-Step! Outperforming Larger Language Models with Less
Training Data and Smaller Model Sizes [91.58845026796149]
大規模言語モデルを上回る小さなモデルを訓練する新しいメカニズムであるDistilling Step-by-stepを導入する。
4つのNLPベンチマークで3つの結果を得た。
論文 参考訳(メタデータ) (2023-05-03T17:50:56Z) - SPDF: Sparse Pre-training and Dense Fine-tuning for Large Language
Models [4.114555639014612]
本研究は,非構造的重み空間を用いて,事前訓練中にのみ重みのサブセットを訓練する利点を示す。
我々は1.3Bパラメータ GPT-3 XL モデルに最大75%の間隔を誘導できることを示す。
論文 参考訳(メタデータ) (2023-03-18T17:56:01Z) - CSS-LM: A Contrastive Framework for Semi-supervised Fine-tuning of
Pre-trained Language Models [59.49705076369856]
プレトレーニング言語モデル(PLM)の微調整フェーズを改善するための新しいフレームワークを提案する。
大規模未ラベルコーパスから,タスクに対するドメインレベルおよびクラスレベルの意味的関連性に応じて,正および負のインスタンスを検索する。
次に、検索したラベル付きおよびオリジナルラベル付きの両方のインスタンスに対して、対照的な半教師付き学習を行い、PLMが重要なタスク関連セマンティックな特徴をキャプチャするのを助ける。
論文 参考訳(メタデータ) (2021-02-07T09:27:26Z) - Self-Supervised Meta-Learning for Few-Shot Natural Language
Classification Tasks [40.97125791174191]
ラベルのないテキストから大規模でリッチなメタ学習タスク分布を生成するための自己教師型手法を提案する。
このメタトレーニングは、言語モデル事前学習の後に微調整を行うよりも、数ショットの一般化に繋がることを示す。
論文 参考訳(メタデータ) (2020-09-17T17:53:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。