A trapped ion quantum computer with robust entangling gates and quantum
coherent feedback
- URL: http://arxiv.org/abs/2111.04155v1
- Date: Sun, 7 Nov 2021 19:17:23 GMT
- Title: A trapped ion quantum computer with robust entangling gates and quantum
coherent feedback
- Authors: Tom Manovitz, Yotam Shapira, Lior Gazit, Nitzan Akerman and Roee Ozeri
- Abstract summary: Chains of ions held in a linear Paul trap are a promising platform for constructing such quantum computers.
We report on the construction of a small, five-qubit, universal quantum computer using $88textSr+$ ions in an RF trap.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computers are expected to achieve a significant speed-up over
classical computers in solving a range of computational problems. Chains of
ions held in a linear Paul trap are a promising platform for constructing such
quantum computers, due to their long coherence times and high quality of
control. Here we report on the construction of a small, five-qubit, universal
quantum computer using $^{88}\text{Sr}^{+}$ ions in an RF trap. All basic
operations, including initialization, quantum logic operations, and readout,
are performed with high fidelity. Selective two-qubit and single-qubit gates,
implemented using a narrow linewidth laser, comprise a universal gate set,
allowing realization of any unitary on the quantum register. We review the main
experimental tools, and describe in detail unique aspects of the computer: the
use of robust entangling gates and the development of a quantum coherent
feedback system through EMCCD camera acquisition. The latter is necessary for
carrying out quantum error correction protocols in future experiments.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Quantum Computation Using Large Spin Qudits [0.0]
dissertation explores quantum computation using qudits encoded into large spins.
First, we delve into the generation of high-fidelity universal gate sets for quantum computation with qudits.
Next, we analyze schemes to encode a qubit in the large spin qudits for fault-tolerant quantum computation.
arXiv Detail & Related papers (2024-05-13T16:19:31Z) - Quantum Digital Simulation of Cavity Quantum Electrodynamics: Insights from Superconducting and Trapped Ion Quantum Testbeds [0.016994625126740815]
We present an early exploration of the potential for quantum computers to efficiently investigate open CQED physics.
Our simulations make use of a recent quantum algorithm that maps the dynamics of a singly excited open Tavis-Cummings model containing $N$ atoms.
By applying technology-specific transpilation and error mitigation techniques, we minimize the impact of gate errors, noise, and decoherence in each hardware platform.
arXiv Detail & Related papers (2024-04-05T02:25:49Z) - Full Quantum Process Tomography of a Universal Entangling Gate on an
IBM's Quantum Computer [0.0]
We conduct a thorough analysis of the SQSCZ gate, a universal two-qubit entangling gate, using real quantum hardware.
Our analysis unveils commendable fidelities and noise properties of the SQSCZ gate, with process fidelities reaching $97.27098%$ and $88.99383%$, respectively.
arXiv Detail & Related papers (2024-02-10T13:25:01Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Separation of gates in quantum parallel programming [1.4821822452801385]
Ying conceived of using two or more small-capacity quantum computers to produce a larger-capacity quantum computing system by quantum parallel programming.
Main obstacle is separating the quantum gates in the whole circuit to produce a tensor product of the local gates.
We theoretically analyse the (sufficient and necessary) separability conditions of multipartite quantum gates in finite or infinite dimensional systems.
arXiv Detail & Related papers (2021-10-28T09:11:41Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Demonstration of quantum advantage by a joint detection receiver for
optical communications using quantum belief propagation on a trapped-ion
device [0.7758302353877525]
We present an experimental realization of a quantum joint detection receiver for binary phase shift keying codewords of a 3-bit linear tree code.
The receiver, translated to a quantum circuit, was experimentally implemented on a trapped-ion device.
We provide an experimental framework that surpasses the quantum limit on the minimum average decoding error probability.
arXiv Detail & Related papers (2021-02-25T18:05:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.