Conveyor-belt superconducting quantum computer
- URL: http://arxiv.org/abs/2412.11782v1
- Date: Mon, 16 Dec 2024 13:51:28 GMT
- Title: Conveyor-belt superconducting quantum computer
- Authors: Francesco Cioni, Roberto Menta, Riccardo Aiudi, Marco Polini, Vittorio Giovannetti,
- Abstract summary: We present a novel quantum processing unit (QPU) for a universal quantum computer which is globally (rather than locally) driven.
Our QPU relies on a string of superconducting qubits with always-on ZZ interactions, enclosed into a closed geometry.
The ability to perform multi-qubit operations in a single step could vastly improve the fidelity and execution time of many algorithms.
- Score: 0.46603287532620735
- License:
- Abstract: The processing unit of a solid-state quantum computer consists in an array of coupled qubits, each locally driven with on-chip microwave lines that route carefully-engineered control signals to the qubits in order to perform logical operations. This approach to quantum computing comes with two major problems. On the one hand, it greatly hampers scalability towards fault-tolerant quantum computers, which are estimated to need a number of qubits -- and, therefore driving lines -- on the order of $10^6$. On the other hand, these lines are a source of electromagnetic noise, exacerbating frequency crowding and crosstalk, while also contributing to power dissipation inside the dilution fridge. We here tackle these two overwhelming challenges by presenting a novel quantum processing unit (QPU) for a universal quantum computer which is globally (rather than locally) driven. Our QPU relies on a string of superconducting qubits with always-on ZZ interactions, enclosed into a closed geometry, which we dub ``conveyor belt''. Strikingly, this architecture requires only $\mathcal{O}(N)$ physical qubits to run a computation on $N$ computational qubits, in contrast to previous $\mathcal{O}(N^2)$ proposals for global quantum computation. Additionally, universality is achieved via the implementation of single-qubit gates and a one-shot Toffoli gate. The ability to perform multi-qubit operations in a single step could vastly improve the fidelity and execution time of many algorithms.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Pipeline quantum processor architecture for silicon spin qubits [0.0]
Noisy intermediate-scale quantum (NISQ) devices seek to achieve quantum advantage over classical systems.
We propose a NISQ processor architecture using a qubit pipeline' in which all run-time control is applied globally.
This is achieved by progressing qubit states through a layered physical array of structures.
arXiv Detail & Related papers (2023-06-13T10:35:01Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Distribution of Quantum Circuits Over General Quantum Networks [3.7344608362649505]
Near-term quantum computers can hold only a small number of qubits.
One way to facilitate large-scale quantum computations is through a distributed network of quantum computers.
We consider the problem of distributing quantum programs across a quantum network of heterogeneous quantum computers.
arXiv Detail & Related papers (2022-06-13T19:30:48Z) - A trapped ion quantum computer with robust entangling gates and quantum
coherent feedback [0.0]
Chains of ions held in a linear Paul trap are a promising platform for constructing such quantum computers.
We report on the construction of a small, five-qubit, universal quantum computer using $88textSr+$ ions in an RF trap.
arXiv Detail & Related papers (2021-11-07T19:17:23Z) - Separation of gates in quantum parallel programming [1.4821822452801385]
Ying conceived of using two or more small-capacity quantum computers to produce a larger-capacity quantum computing system by quantum parallel programming.
Main obstacle is separating the quantum gates in the whole circuit to produce a tensor product of the local gates.
We theoretically analyse the (sufficient and necessary) separability conditions of multipartite quantum gates in finite or infinite dimensional systems.
arXiv Detail & Related papers (2021-10-28T09:11:41Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Superconducting Circuit Architecture for Digital-Analog Quantum
Computing [0.0]
superconducting circuit architecture suitable for digital-analog quantum computing (DAQC)
DAQC makes a smart use of digital steps (single qubit rotations) and analog blocks (parametrized multiqubit operations) to outperform digital quantum computing algorithms.
arXiv Detail & Related papers (2021-03-29T15:29:58Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.