Triple-level Model Inferred Collaborative Network Architecture for Video
Deraining
- URL: http://arxiv.org/abs/2111.04459v1
- Date: Mon, 8 Nov 2021 13:09:00 GMT
- Title: Triple-level Model Inferred Collaborative Network Architecture for Video
Deraining
- Authors: Pan Mu, Zhu Liu, Yaohua Liu, Risheng Liu, Xin Fan
- Abstract summary: We develop a model-guided triple-level optimization framework to deduce network architecture with cooperating optimization and auto-searching mechanism.
Our model shows significant improvements in fidelity and temporal consistency over the state-of-the-art works.
- Score: 43.06607185181434
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video deraining is an important issue for outdoor vision systems and has been
investigated extensively. However, designing optimal architectures by the
aggregating model formation and data distribution is a challenging task for
video deraining. In this paper, we develop a model-guided triple-level
optimization framework to deduce network architecture with cooperating
optimization and auto-searching mechanism, named Triple-level Model Inferred
Cooperating Searching (TMICS), for dealing with various video rain
circumstances. In particular, to mitigate the problem that existing methods
cannot cover various rain streaks distribution, we first design a
hyper-parameter optimization model about task variable and hyper-parameter.
Based on the proposed optimization model, we design a collaborative structure
for video deraining. This structure includes Dominant Network Architecture
(DNA) and Companionate Network Architecture (CNA) that is cooperated by
introducing an Attention-based Averaging Scheme (AAS). To better explore
inter-frame information from videos, we introduce a macroscopic structure
searching scheme that searches from Optical Flow Module (OFM) and Temporal
Grouping Module (TGM) to help restore latent frame. In addition, we apply the
differentiable neural architecture searching from a compact candidate set of
task-specific operations to discover desirable rain streaks removal
architectures automatically. Extensive experiments on various datasets
demonstrate that our model shows significant improvements in fidelity and
temporal consistency over the state-of-the-art works. Source code is available
at https://github.com/vis-opt-group/TMICS.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - HKNAS: Classification of Hyperspectral Imagery Based on Hyper Kernel
Neural Architecture Search [104.45426861115972]
We propose to directly generate structural parameters by utilizing the specifically designed hyper kernels.
We obtain three kinds of networks to separately conduct pixel-level or image-level classifications with 1-D or 3-D convolutions.
A series of experiments on six public datasets demonstrate that the proposed methods achieve state-of-the-art results.
arXiv Detail & Related papers (2023-04-23T17:27:40Z) - POPNASv3: a Pareto-Optimal Neural Architecture Search Solution for Image
and Time Series Classification [8.190723030003804]
This article presents the third version of a sequential model-based NAS algorithm targeting different hardware environments and multiple classification tasks.
Our method is able to find competitive architectures within large search spaces, while keeping a flexible structure and data processing pipeline to adapt to different tasks.
The experiments performed on images and time series classification datasets provide evidence that POPNASv3 can explore a large set of assorted operators and converge to optimal architectures suited for the type of data provided under different scenarios.
arXiv Detail & Related papers (2022-12-13T17:14:14Z) - Sparsity-guided Network Design for Frame Interpolation [39.828644638174225]
We present a compression-driven network design for frame-based algorithms.
We leverage model pruning through sparsity-inducing optimization to greatly reduce the model size.
We achieve a considerable performance gain with a quarter of the size of the original AdaCoF.
arXiv Detail & Related papers (2022-09-09T23:13:25Z) - Multi-scale Attentive Image De-raining Networks via Neural Architecture
Search [23.53770663034919]
We develop a high-performance multi-scale attentive neural architecture search (MANAS) framework for image deraining.
The proposed method formulates a new multi-scale attention search space with multiple flexible modules that are favorite to the image de-raining task.
The internal multiscale attentive architecture of the de-raining network is searched automatically through a gradient-based search algorithm.
arXiv Detail & Related papers (2022-07-02T03:47:13Z) - One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search
Space Shrinking [97.60915598958968]
We propose a one-shot neural ensemble architecture search (NEAS) solution that addresses the two challenges.
For the first challenge, we introduce a novel diversity-based metric to guide search space shrinking.
For the second challenge, we enable a new search dimension to learn layer sharing among different models for efficiency purposes.
arXiv Detail & Related papers (2021-04-01T16:29:49Z) - Towards Automated Neural Interaction Discovery for Click-Through Rate
Prediction [64.03526633651218]
Click-Through Rate (CTR) prediction is one of the most important machine learning tasks in recommender systems.
We propose an automated interaction architecture discovering framework for CTR prediction named AutoCTR.
arXiv Detail & Related papers (2020-06-29T04:33:01Z) - Revealing the Invisible with Model and Data Shrinking for
Composite-database Micro-expression Recognition [49.463864096615254]
We analyze the influence of learning complexity, including the input complexity and model complexity.
We propose a recurrent convolutional network (RCN) to explore the shallower-architecture and lower-resolution input data.
We develop three parameter-free modules to integrate with RCN without increasing any learnable parameters.
arXiv Detail & Related papers (2020-06-17T06:19:24Z) - AlphaGAN: Fully Differentiable Architecture Search for Generative
Adversarial Networks [15.740179244963116]
Generative Adversarial Networks (GANs) are formulated as minimax game problems, whereby generators attempt to approach real data distributions by virtue of adversarial learning against discriminators.
In this work, we aim to boost model learning from the perspective of network architectures, by incorporating recent progress on automated architecture search into GANs.
We propose a fully differentiable search framework for generative adversarial networks, dubbed alphaGAN.
arXiv Detail & Related papers (2020-06-16T13:27:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.